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Generative AI Revolution

Transformative Impact

Over the past few years, Generative AI (Gen-AI) has 
dramatically transformed the technology landscape, 
particularly with the rise of Large Language Models (LLMs).

Industry-Wide Effects

The impact of Gen-AI is felt across industries: from AI-
driven customer service (chatbots) to recommendation 
systems, personalized content creation, and automated 
decision-making.



Business Needs in the Gen-AI Era for Enterprise Customers

Unstructured Data (80%)

Documents, emails, reports, etc.

Semi-structured Data

JSON, XML, etc.

Structured Data (20%)

MySQL, Oracle, CSV

Currently, only 20% of enterprise data is structured, while 80% exists in the form of unstructured and semi-structured data (e.g., 
documents, emails, reports). 

—— IDC

Existing Applications

• Document management systems

• Search engines for internal information

• Knowledge graphs

Generative AI Use Cases

• Internal Document Q&A

• Natural Language Querying

• Document Understanding, 
Summarization, and Generation

Intelligent Decision-Making

• Decision-making

• APIs or system-to-system integration



Demand for Real-Time Intelligent Decision-Making

Real-Time Data Processing

Enterprises are increasingly relying on 
AI for decision-making, driving a 
significant demand for real-time data 
processing capabilities.

Massive Data Volumes

The adoption of AI-driven intelligence 
requires databases to handle massive 
data volumes, including diverse data 
types and complex relationships.

Data-Driven Intelligence

The shift towards AI-driven intelligence 
necessitates databases that can 
support the efficient processing and 
analysis of vast datasets.



Problem & Motivation

Inefficiencies in Existing 
Databases

Traditional databases are 
optimized for structured, relational 
data, making them ill-suited for 
managing the multi-model data 
required by modern AI 
applications. They struggle to 
efficiently perform vector 
searches or capture complex 
relationships between data points.

Inefficiencies in RAG Systems

Retrieval Augmented Generation 
(RAG) systems, which leverage 
LLMs for more accurate 
responses, often suffer from 
inefficient contextual retrieval. 
Existing databases lack the 
capabilities to effectively index 
and retrieve information based on 
semantic context.

Demand for a New Approach

The need for a new generation of 
databases that can handle multi-
model data, support efficient 
vector searches, and enable 
effective contextual retrieval is 
crucial for the advancement of AI 
applications. This new database 
should be tailored for the unique 
requirements of LLM-based 
systems.



Business Scenarios Requiring Multi-Model Solutions Beyond 
RAG

No. Typical Problem Recommended Approach Explanation

1 Recommend tourist spots in Guangzhou General LLM Capabilities Standard large model response based on 
common knowledge

2 Company leave policy Local Knowledge + RAG Requires RAG to access specific internal 
documents

3 Compliance in financial reporting Structured Data + RAG Requires filtering structured data to ensure 
compliance

4 Sales ranking of product lines in North 
China for February

Structured Data + Large Model Query Combination of structured data and AI-driven 
query for sales insights

5 Credit card applicants linked to a specific 
technology company

Large Model + Graph + Vector Requires graph and vector searches to match 
and identify complex connections

6 Data lineage in supply chain information table LLM + Graph Investigate data lineage through graph queries

7 Analyze causes for revenue decline and 
suggest actions

Large Model + Agent + Small/Large Models A complex scenario requiring a combination of 
models for decision-making insights

Graph Vector HTAP 
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Design of ArcNeural

1System Overview

Comprehensive look at ArcNeural's architecture

2 Storage Layer

Efficient data persistence and retrieval

3MemEngine

In-memory processing for high performance

4 Vector Indexing

Advanced indexing for multi-dimensional data

5GraphHTAP

Hybrid transactional and analytical processing for 
graph data



Design Overview of ArcNeural



ArcNeural TP Group

Includes TP Partition Primary, 
Cypher Ext Parser, Optimizer, 
Session Management, Plan 
Parallel Executor, and ArcGraph 
Engine

ArcNeural AP Group

Consists of AP Nodes with 
Analytics Algorithms and Learning 
Algorithms

Storage Layer

Incorporates MemEngine, 
ArcVector Engine, and various 
storage options

Key Features

Share Read/Single Write, Cloud Native Infra, High Throughput/Low cost, Vector Embedded, Graph HTAP, Cloud Native



Storage: Persistent Layer

Log-as-Data

Write-Ahead Log (WAL) plays a central role in ensuring data 
consistency and persistence.

Persistent

• Single-node:   RocksDB

• Distributed: TiKV

• Cloud-based storage: AWS S3, or OSS (Alibaba Cloud) 



MemEngine: Graph Topology In-Memory Cache

Graph Topology & Attribute Data

MemEngine stores *graph topology* and *attribute data* in 
memory.

Adaptive Edge Collection

Handling Skewed Vertex Connectivity. 

For vertices with a low degree: a vector like structure. 

Vertices with a high degree: B-tree or a hash table.



Vector Indexing for High-Performance AI Workloads

Local storage uses memory-mapped files (MMAP) for HNSW indexing, while payload data is stored using RocksDB



Unified Graph Transactional and Analytical Processing

Unified Query Interface

• Cypher extend: A powerful query language that allows for 
graph data manipulation and analysis.

• Handle both real-time transactions and deep analytical workloads

Example

-- Find the subgraph

MATCH (n)-[e:likes]->(b)

-- Call the PageRank algorithm on the specified 

subgraph

CALL pagerank((n)-[e]->(b))

YIELD *  RETURN task_id; id;  -- Returned as an 

asynchronous task.

The TP layer performs semantic analysis to determine if an analytical 
(AP) operation is needed when a query request is received.



Native Graph Computation with Apache Arrow

1 Transfer Bottlenecks and overhead (local 
GraphAR file)

2 Arrow is a columnar format, ideal for handling 
large-scale

3 same Apache Arrow format used in TP is also 
directly compatible with the Analytical 
Processing (AP), which Eliminats the Data 
Restructuring overhead.
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Criminal Network Detection in Encrypted 
Communications

Encrypted Platforms

Encrypted communication 
platforms like Telegram 
have become a hub for 
criminal activity.

Online Gambling

Criminal networks use 
platforms like Telegram to 
run illegal online gambling 
operations, often involving 
high-stakes bets and rigged 
games.

Pornography

Telegram is used to share 
illegal pornography, often 
involving child exploitation 
and other forms of 
exploitation.

Gun Trading

Criminal networks use 
Telegram to trade firearms 
illegally, often connecting 
buyers and sellers who 
operate outside the law.



Graph Analysis and Large Language Models: Solutions for 
Criminal Network Detection

Relationship Mapping

Revealing hidden connections between suspects by analyzing individual 
and group chat data.

Cross-Platform Analysis

Identifying criminal networks operating across multiple platforms using 
shared identifiers.

Behavior Analysis

Detecting suspicious behaviors and potential collaborators by examining 
interaction patterns.

Association Analysis

Pinpointing key individuals and analyzing links between suspicious 
accounts to establish stronger connections.



Large Language Models (LLMs) Enhance Graph

Content Analysis

Analyze communication data to flag potential criminal 
activities.

Key Information Extraction

Extract vital details like phone numbers, addresses, and 
card numbers from chat logs.

Lead Summarization

Summarize evidence to highlight key leads in a case.

Intelligent Interaction

Enable investigators to query the model for insights 
and connections.



How to Chat to Graph? Option1: Text2Cypher

Direct Cypher query generation that translates natural language 
questions into a Cypher query for ArcNeural.

1. A user asks an investigative question in plain text (e.g., "Who 
are the collaborators of {user_id}?").

2. The system processes the text and identifies the appropriate 
graph traversal and features needed.

3. A Cypher query is generated to retrieve the answer from the graph.

Example Query

Question: "What is the IP address of user {user_id}?”

MATCH (u:User {id: '{user_id}'})

RETURN u.ip_address AS IP_Address

This approach may not handle complex reasoning or multi-step operations well. Some Cypher sentences (e.g., Having clause) are not implemented 



Option 2: GraphAgent

1 Understanding the Question

The agent figures out what graph 
operations are needed.

2 Creating a Plan

The agent makes a plan of steps to 
complete the task (e.g., get nodes, 
check connections, count 
connections).

3 Executing APIs

The agent uses several APIs to get 
and analyze data from the graph.

Optimize  workflow by employing  agents for  function 
calling.

NodeDegree: Gets the number of connections for a node.

NodeFeature: Gets a specific feature of a node (e.g., IP address).

NodesFeature: Gets features for multiple nodes.

NeighbourCheck: Checks if two nodes are connected.

RetrieveNode: Gets a node using its identifier.

RetrieveNodeWithType: Gets a node of a specific type (e.g., User, Group).



plan_prompt = ( "Let's first understand the 

problem and devise a plan to solve the 

problem." f"Each step is a interaction with 

Graph, the schema of Graph is {schema}" 

...

"At the end of your plan, say 

'<END_OF_PLAN>'" )

Acts as a method when Text2Cypher fails to generate 
the correct Cypher query.

Limitations:

Slower Performance: Significantly slower than 
Text2Cypher because it involves generating an 
execution plan and calling APIs step-by-step.

Execution Overhead: The execution context is longer, 
requiring more resources and time, especially when 
handling large or complex graph structures.

More Complexity: Requires careful coordination of 
multiple API calls, which can introduce complexity in 
implementation.



Types of Graph Queries

Easy

These questions can be answered by 
looking up the feature/degree of only one 
node or travel on the graph within one hop. 

For example, “What is the IP address of the 
user with ID {user_id}? or "Who are the 
members of the group with ID {group_id}?"

Medium

These questions require reasoning on the 
graphs for more than one hop and involve 
returning the feature/degree of nodes.

For example, “Who are the most connected 
members within the criminal group with ID 
{group_id}?”or "Who are the key influencers 
in a criminal network connected to user 
{user_id}?".

Hard

These questions cannot be directly 
answered by looking up the graph, but the 
graph can be useful by providing 
informative context. For example, “What communication 
patterns suggest that {user_id} may be 
hiding their identity?” or “What are the 
suspicious activity trends among users in 
{group_id}?"



Lessons Learned from Building Graph-AI Systems

1 Graph Questions Are 
Challenging for LLMs

State-of-the-art LLMs are 
needed for graph 
understanding. Break down 
tasks for better results.

2 Design an Effective 
Workflow

Use data labeling, a clear graph 
schema, and community 
detection. Create meaningful 
features (node degrees, 
centrality measures).

3 Chain-of-Thought (CoT) and 
Few-Shot Learning are 
Valuable

Use Chain-of-Thought (CoT) 
prompting and Dynamic Few-
Shot Learning (examples: 
Natural Language → CoT →
Cypher/API)

4 Leverage LLMs for Insights, Not Perfect 
Answers

Don't rely on LLMs for absolute accuracy. Use them to 
generate useful insights and initial leads, saving 
analysts time.

5 Self-Consistency Enhances Robustness

LLMs can produce inconsistent results. To address 
this, generate multiple solutions for the same query, 
ensuring more reliable outcomes.



Conclusion

—
Unified Multi-Model Data 

Handling

ArcNeural seamlessly integrates 
structured, unstructured, and semi-

structured data, allowing businesses 
to work with a wide range of data 

types within a single platform.

—
AI-Optimized Performance

The combination of vector search, 
graph-based HTAP, and LLM-

enhanced analytics makes ArcNeural 
ideal for businesses looking to gain 
faster insights and make smarter 

decisions in real time.

—
Tailored for Complex, Real-Time 

Applications

Whether it’s criminal network 
detection, fraud analysis, or enterprise 

AI solutions, ArcNeural provides the 
scalability, performance, and flexibility 

required to address today's most 
complex data challenges.
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