
By Wu Min,

Fabarta Inc. & Hangzhou Dianzi University

Contents

1 Introduction & Motivation

• Generative AI Revolution

• Enterprise Needs in the Gen-AI Era

• Demand for Multi-Model Solutions

2 Design of ArcNeural

• System Overview

• Storage Layer

• MemEngine

• Vector Indexing

• GraphHTAP

3 Enterprise Applications

• Criminal Network Detection

• Chat to Graph

• Lessons Learned

4 Conclusion & Q&A

Generative AI Revolution

Transformative Impact

Over the past few years, Generative AI (Gen-AI) has
dramatically transformed the technology landscape,
particularly with the rise of Large Language Models (LLMs).

Industry-Wide Effects

The impact of Gen-AI is felt across industries: from AI-
driven customer service (chatbots) to recommendation
systems, personalized content creation, and automated
decision-making.

Business Needs in the Gen-AI Era for Enterprise Customers

Unstructured Data (80%)

Documents, emails, reports, etc.

Semi-structured Data

JSON, XML, etc.

Structured Data (20%)

MySQL, Oracle, CSV

Currently, only 20% of enterprise data is structured, while 80% exists in the form of unstructured and semi-structured data (e.g.,
documents, emails, reports).

—— IDC

Existing Applications

• Document management systems

• Search engines for internal information

• Knowledge graphs

Generative AI Use Cases

• Internal Document Q&A

• Natural Language Querying

• Document Understanding,
Summarization, and Generation

Intelligent Decision-Making

• Decision-making

• APIs or system-to-system integration

Demand for Real-Time Intelligent Decision-Making

Real-Time Data Processing

Enterprises are increasingly relying on
AI for decision-making, driving a
significant demand for real-time data
processing capabilities.

Massive Data Volumes

The adoption of AI-driven intelligence
requires databases to handle massive
data volumes, including diverse data
types and complex relationships.

Data-Driven Intelligence

The shift towards AI-driven intelligence
necessitates databases that can
support the efficient processing and
analysis of vast datasets.

Problem & Motivation

Inefficiencies in Existing
Databases

Traditional databases are
optimized for structured, relational
data, making them ill-suited for
managing the multi-model data
required by modern AI
applications. They struggle to
efficiently perform vector
searches or capture complex
relationships between data points.

Inefficiencies in RAG Systems

Retrieval Augmented Generation
(RAG) systems, which leverage
LLMs for more accurate
responses, often suffer from
inefficient contextual retrieval.
Existing databases lack the
capabilities to effectively index
and retrieve information based on
semantic context.

Demand for a New Approach

The need for a new generation of
databases that can handle multi-
model data, support efficient
vector searches, and enable
effective contextual retrieval is
crucial for the advancement of AI
applications. This new database
should be tailored for the unique
requirements of LLM-based
systems.

Business Scenarios Requiring Multi-Model Solutions Beyond
RAG

No. Typical Problem Recommended Approach Explanation

1 Recommend tourist spots in Guangzhou General LLM Capabilities Standard large model response based on
common knowledge

2 Company leave policy Local Knowledge + RAG Requires RAG to access specific internal
documents

3 Compliance in financial reporting Structured Data + RAG Requires filtering structured data to ensure
compliance

4 Sales ranking of product lines in North
China for February

Structured Data + Large Model Query Combination of structured data and AI-driven
query for sales insights

5 Credit card applicants linked to a specific
technology company

Large Model + Graph + Vector Requires graph and vector searches to match
and identify complex connections

6 Data lineage in supply chain information table LLM + Graph Investigate data lineage through graph queries

7 Analyze causes for revenue decline and
suggest actions

Large Model + Agent + Small/Large Models A complex scenario requiring a combination of
models for decision-making insights

Graph Vector HTAP

Contents

1 Introduction & Motivation

• Generative AI Revolution

• Enterprise Needs in the Gen-AI Era

• Demand for Multi-Model Solutions

2 Design of ArcNeural

• System Overview

• Storage Layer

• MemEngine

• Vector Indexing

• GraphHTAP

3 Enterprise Applications

• Criminal Network Detection

• Chat to Graph

• Lessons Learned

4 Conclusion & Q&A

Design of ArcNeural

1System Overview

Comprehensive look at ArcNeural's architecture

2 Storage Layer

Efficient data persistence and retrieval

3MemEngine

In-memory processing for high performance

4 Vector Indexing

Advanced indexing for multi-dimensional data

5GraphHTAP

Hybrid transactional and analytical processing for
graph data

Design Overview of ArcNeural

ArcNeural TP Group

Includes TP Partition Primary,
Cypher Ext Parser, Optimizer,
Session Management, Plan
Parallel Executor, and ArcGraph
Engine

ArcNeural AP Group

Consists of AP Nodes with
Analytics Algorithms and Learning
Algorithms

Storage Layer

Incorporates MemEngine,
ArcVector Engine, and various
storage options

Key Features

Share Read/Single Write, Cloud Native Infra, High Throughput/Low cost, Vector Embedded, Graph HTAP, Cloud Native

Storage: Persistent Layer

Log-as-Data

Write-Ahead Log (WAL) plays a central role in ensuring data
consistency and persistence.

Persistent

• Single-node: RocksDB

• Distributed: TiKV

• Cloud-based storage: AWS S3, or OSS (Alibaba Cloud)

MemEngine: Graph Topology In-Memory Cache

Graph Topology & Attribute Data

MemEngine stores *graph topology* and *attribute data* in
memory.

Adaptive Edge Collection

Handling Skewed Vertex Connectivity.

For vertices with a low degree: a vector like structure.

Vertices with a high degree: B-tree or a hash table.

Vector Indexing for High-Performance AI Workloads

Local storage uses memory-mapped files (MMAP) for HNSW indexing, while payload data is stored using RocksDB

Unified Graph Transactional and Analytical Processing

Unified Query Interface

• Cypher extend: A powerful query language that allows for
graph data manipulation and analysis.

• Handle both real-time transactions and deep analytical workloads

Example

-- Find the subgraph

MATCH (n)-[e:likes]->(b)

-- Call the PageRank algorithm on the specified

subgraph

CALL pagerank((n)-[e]->(b))

YIELD * RETURN task_id; id; -- Returned as an

asynchronous task.

The TP layer performs semantic analysis to determine if an analytical
(AP) operation is needed when a query request is received.

Native Graph Computation with Apache Arrow

1 Transfer Bottlenecks and overhead (local
GraphAR file)

2 Arrow is a columnar format, ideal for handling
large-scale

3 same Apache Arrow format used in TP is also
directly compatible with the Analytical
Processing (AP), which Eliminats the Data
Restructuring overhead.

Contents

1 Introduction & Motivation

• Generative AI Revolution

• Enterprise Needs in the Gen-AI Era

• Demand for Multi-Model Solutions

2 Design of ArcNeural

• System Overview

• Storage Layer

• MemEngine

• Vector Indexing

• GraphHTAP

3 Enterprise Applications

• Criminal Network Detection

• Chat to Graph

• Lessons Learned

4 Conclusion & Q&A

Criminal Network Detection in Encrypted
Communications

Encrypted Platforms

Encrypted communication
platforms like Telegram
have become a hub for
criminal activity.

Online Gambling

Criminal networks use
platforms like Telegram to
run illegal online gambling
operations, often involving
high-stakes bets and rigged
games.

Pornography

Telegram is used to share
illegal pornography, often
involving child exploitation
and other forms of
exploitation.

Gun Trading

Criminal networks use
Telegram to trade firearms
illegally, often connecting
buyers and sellers who
operate outside the law.

Graph Analysis and Large Language Models: Solutions for
Criminal Network Detection

Relationship Mapping

Revealing hidden connections between suspects by analyzing individual
and group chat data.

Cross-Platform Analysis

Identifying criminal networks operating across multiple platforms using
shared identifiers.

Behavior Analysis

Detecting suspicious behaviors and potential collaborators by examining
interaction patterns.

Association Analysis

Pinpointing key individuals and analyzing links between suspicious
accounts to establish stronger connections.

Large Language Models (LLMs) Enhance Graph

Content Analysis

Analyze communication data to flag potential criminal
activities.

Key Information Extraction

Extract vital details like phone numbers, addresses, and
card numbers from chat logs.

Lead Summarization

Summarize evidence to highlight key leads in a case.

Intelligent Interaction

Enable investigators to query the model for insights
and connections.

How to Chat to Graph? Option1: Text2Cypher

Direct Cypher query generation that translates natural language
questions into a Cypher query for ArcNeural.

1. A user asks an investigative question in plain text (e.g., "Who
are the collaborators of {user_id}?").

2. The system processes the text and identifies the appropriate
graph traversal and features needed.

3. A Cypher query is generated to retrieve the answer from the graph.

Example Query

Question: "What is the IP address of user {user_id}?”

MATCH (u:User {id: '{user_id}'})

RETURN u.ip_address AS IP_Address

This approach may not handle complex reasoning or multi-step operations well. Some Cypher sentences (e.g., Having clause) are not implemented

Option 2: GraphAgent

1 Understanding the Question

The agent figures out what graph
operations are needed.

2 Creating a Plan

The agent makes a plan of steps to
complete the task (e.g., get nodes,
check connections, count
connections).

3 Executing APIs

The agent uses several APIs to get
and analyze data from the graph.

Optimize workflow by employing agents for function
calling.

NodeDegree: Gets the number of connections for a node.

NodeFeature: Gets a specific feature of a node (e.g., IP address).

NodesFeature: Gets features for multiple nodes.

NeighbourCheck: Checks if two nodes are connected.

RetrieveNode: Gets a node using its identifier.

RetrieveNodeWithType: Gets a node of a specific type (e.g., User, Group).

plan_prompt = ("Let's first understand the

problem and devise a plan to solve the

problem." f"Each step is a interaction with

Graph, the schema of Graph is {schema}"

...

"At the end of your plan, say

'<END_OF_PLAN>'")

Acts as a method when Text2Cypher fails to generate
the correct Cypher query.

Limitations:

Slower Performance: Significantly slower than
Text2Cypher because it involves generating an
execution plan and calling APIs step-by-step.

Execution Overhead: The execution context is longer,
requiring more resources and time, especially when
handling large or complex graph structures.

More Complexity: Requires careful coordination of
multiple API calls, which can introduce complexity in
implementation.

Types of Graph Queries

Easy

These questions can be answered by
looking up the feature/degree of only one
node or travel on the graph within one hop.

For example, “What is the IP address of the
user with ID {user_id}? or "Who are the
members of the group with ID {group_id}?"

Medium

These questions require reasoning on the
graphs for more than one hop and involve
returning the feature/degree of nodes.

For example, “Who are the most connected
members within the criminal group with ID
{group_id}?”or "Who are the key influencers
in a criminal network connected to user
{user_id}?".

Hard

These questions cannot be directly
answered by looking up the graph, but the
graph can be useful by providing
informative context. For example, “What communication
patterns suggest that {user_id} may be
hiding their identity?” or “What are the
suspicious activity trends among users in
{group_id}?"

Lessons Learned from Building Graph-AI Systems

1 Graph Questions Are
Challenging for LLMs

State-of-the-art LLMs are
needed for graph
understanding. Break down
tasks for better results.

2 Design an Effective
Workflow

Use data labeling, a clear graph
schema, and community
detection. Create meaningful
features (node degrees,
centrality measures).

3 Chain-of-Thought (CoT) and
Few-Shot Learning are
Valuable

Use Chain-of-Thought (CoT)
prompting and Dynamic Few-
Shot Learning (examples:
Natural Language → CoT →
Cypher/API)

4 Leverage LLMs for Insights, Not Perfect
Answers

Don't rely on LLMs for absolute accuracy. Use them to
generate useful insights and initial leads, saving
analysts time.

5 Self-Consistency Enhances Robustness

LLMs can produce inconsistent results. To address
this, generate multiple solutions for the same query,
ensuring more reliable outcomes.

Conclusion

—
Unified Multi-Model Data

Handling

ArcNeural seamlessly integrates
structured, unstructured, and semi-

structured data, allowing businesses
to work with a wide range of data

types within a single platform.

—
AI-Optimized Performance

The combination of vector search,
graph-based HTAP, and LLM-

enhanced analytics makes ArcNeural
ideal for businesses looking to gain
faster insights and make smarter

decisions in real time.

—
Tailored for Complex, Real-Time

Applications

Whether it’s criminal network
detection, fraud analysis, or enterprise

AI solutions, ArcNeural provides the
scalability, performance, and flexibility

required to address today's most
complex data challenges.

Q&A

