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Safe harbor statement
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• Powerful AI models that can 
process and generate human 
language text

• Model created by training 
on massive volumes of data

• Researchers and practitioners
are racing to learn how LLMs
can help their products and
their business

Large Language Models (LLMs)
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• LLMs only as good 
as the data they are 
trained on
• They can get out-of-date
• They can have bias
• They are expensive to re-train

• Sometimes answers are misleading 
and incorrect – “hallucination”
• Because they generate output 

based on patterns in data 
they have been trained on 
rather than from a deep 
understanding of facts

Some Challenges Faced by LLMs
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Not True



Improved Responses by Adding Context in the Prompt
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RAG: Retrieval-Augmented Generation
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User query
(prompt)

Encode and use 
to  retrieve 
context
from vector 
database

Retrieve 
context

Context-
enhanced 
prompt

LLMs

Vector database 
optimized for fast 
search

Regular 
updates

• Use latest data to provide context 
to LLM

• Create encodings (referred to as 
embeddings) that are stored as 
vectors in a vector database

• User query is encoded and 
matched with stored vectors

• Top matches are retrieved and 
provided as context with the 
prompt



Example
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Retrieval-Augmented Generation with Langchain and OCI GenAI Service
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Graph RAG
First, what are graphs?
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The Graph Data Model
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Data is Connected
Modeling data as a graph enables analytics 
based on how entities are connected
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Knowledge Graph

Captures facts from a domain in the form of entities and relationships connected as a graph

OCI GenAI Service

Melli

Joe
Redwood Shores
CA

Marouane

Jayant

Nashua
NH

Co
lle

ag
ue

Colleague

Colleague

Location

Location

Location

Presented

Used

U
sed

Casablanca
Morocco

Presented



Knowledge Graph
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Knowledge Graph
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Can these facts be used to answer questions?

For example, who is likely to use the 
GenAI service?



Knowledge Graph
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Can these facts be used to answer questions?

For example, who is likely to use the 
GenAI service?



Knowledge graphs enable a clear understanding of 
data for making informed decisions
Can a graph be embedded as a vector for use in a 
RAG pipeline?

Knowledge Graph
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Graph embeddings capture the dependencies and links between different entities in the graph

Create Embeddings of a Graph Using Graph ML Algorithms
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DeepWalk
• Generate node embeddings based on graph topology
• Represent a node based on how it is connected

Pg2Vec
• Graphlet embeddings based on graph topology and node/edge features

GraphWise (Graph CNN)
• Learns a node embedding function using topology and node/edge features
• Supervised and Unsupervised variants

Graph ML Algorithms
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DeepWalk
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• Compute random walks for each node
• Create a sequence of node-id strings from each walk
• Generate a vector representation for each node



Oracle Graph APIs to Compute Embeddings with DeepWalk
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Store and match 
embeddings using 
planned vector 
datatype feature 
in Oracle 
Database 



Based on GraphSAGE from Hamilton et al., a Graph CNN
• Learn a function to generate embeddings – can be applied to any graph after that
• By local neighborhood sampling and aggregation

GraphWise
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Sample neighbors recursively

Hop 1

Hop 2

Aggregate information from sampled 
neighbors

Aggregation Hop 1

Aggregation Hop 2

Predict using aggregated information

934

934 is known to be fraudulent, 
can be labeled.



Oracle Graph APIs to Compute Embeddings Unsupervised GraphWise
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Store and match 
embeddings using 
planned vector 
datatype feature 
in Oracle 
Database 



Graph RAG: Enhancing Retrieval-Augmented Generation with Graphs
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User query
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Encode and use 
to  retrieve 
context
from vector 
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Retrieve 
context
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enhanced 
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LLMs

Vector database with vectors created from 
node and edge embeddings from 
knowledge graphs

• Use latest data connected as a 
graph to provide context to LLM

• Create encodings (referred to as 
embeddings) from the graph and 
store as vectors in a vector database

• User query is encoded and matched 
with stored vectors

• Top matches are retrieved and 
provided as context with the 
prompt



Using Graph RAG to Enhance the Prompt with New Information
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• Create embeddings from the graph and store in the vector database
• Create an embedding for the user query
• Retrieve top k matches
• Build a sub-graph from retrieved entities and nodes
• Use a graph neural network to map the graph directly into an embedding space similar to what is expected 

by the LLM.  Then feed it directly as a token.

New Research
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Image from: G-Retriever: Retrieval-Augmented Generation for Textual Graph 
Understanding and Question Answering. He et al



Other Ways of Using Graphs with GenAI
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• Use LLMs to translate human language queries into graph query language
• If the LLM is not trained to formulate such queries, they can have the capacity to learn with a few examples 

(‘few-shot’ learning)
• Eliminates the need for developers to learn new syntax

Steps
• Embed as many queries as possible in a vector database
• From a user query identify the top k matches and retrieve the corresponding graph queries
• Use these related pairs as prompt examples to instruct our LLM to generate SPARQL queries

Generate Graph Queries
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Webpage: oracle.com/database/graph

Oracle LiveLabs: bit.ly/GraphLiveLabs

YouTube: bit.ly/Spatial-Graph-YouTube

Blogs: bit.ly/OracleGraphBlog
medium.com/tag/oracle-graph/latest

Resources
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Thank you

oracle.com/database/graph/
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Additional Slides
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Large Language Models (LLMs)
Introduction to Key concepts
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• What are LLMs?
• Powerful AI models that process and produce 

human-like text based on their training on massive 
datasets.

• Why LLMs matter?
• LLMs has become a driving force in many novel AI 

applications, such as virtual assistants, translation, 
content creation and even programming.

• Capabilities
• Understanding nuanced human language.
• Producing coherent and relevant responses given a 

user prompt.
• Learning and leveraging knowledge from an 

extensive collection of data

9/3/2439

• Challenges
• Bias and ethical concern: LLMs can inherit or 

amplify bias present in their training data, leading 
to unintended harmful or unfair outputs

• Hallucination: LLMs could generate misleading or 
incorrect answers with confidence, as they 
generate output based on patterns in data rather 
than a deep understanding of the underlying 
truth

• Resource intensive: Training and running an LLMs 
requires a significant amount of compute power



LLMs with Generative AI Service
Introduction to Key concepts
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• What GenAI offers?
• A fully managed service available in Oracle 

Cloud Infrastructure, that provides to users 
state of the art pretrained LLMs that cover a 
wide range of use cases:
• Text Generation
• Summarization
• Embedding: Converts text to a vector which 

is very convenient for downstream tasks 
such as semantic search, recommender 
systems and so on.

• Given a dataset, GenAI can also take care 
of fine-tuning the LLM for you.
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Supported Models in Generative AI
Introduction to Key concepts
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Supported Models in Generative AI
Introduction to Key concepts
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Supported Models in Generative AI
Introduction to Key concepts

Copyright © 2024, Oracle and/or its affiliates 9/3/2443



Direct Fact Retrieval
Knowledge Graphs in RAG

9/3/24Copyright © 2024, Oracle and/or its affiliates 44

• Once the graph loaded, let’s explore how we can map 
this complex structure to embeddings in order to 
benefit from the power of RAG pipelines.

• As most encoders are trained to ensure a semantic 
similarity: sentences with similar meaning will be 
close in the embedding space, and at the same time 
sentences with different meaning will be further 
apart.

• In the context of knowledge graphs, we can precisely 
extract individual sentences by retrieving triplets: the 
source entity, the relation, and the destination entity.

• These triplets are the building blocks of our graph, 
encapsulating discrete facts. They hold the key to 
addressing a wide array of queries, providing targeted 
and relevant answers.


