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Background—Commonsense Question Answering (CSQA)

» CSQA is a crucial task in natural language understanding
that requires reasoning according to commonsense

knowledge

» Existing CSQA datasets generally adopt multiple-choice

questions to evaluate the model’s performance
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Background—Commonsense Question Answering (CSQA)

» Challenge: It is difficult to learn commonsense knowledge solely from pre-training text corpora, as it is

rarely expressed explicitly in natural language

» Knowledge Graph: Knowledge graphs are more efficient in representing commonsense and can aid

PLMs in comprehending QA pairs and enhancing reasoning capabilities

» Extracting-and-Modeling Paradigm: Existing KG-augmented works primarily follow a paradigm that
first extracts relevant subgraphs or paths related to a given question based on pre-defined rules, and

then models the extracted structural knowledge

‘ T .
O %ﬂ%xc;ﬁégup IuGrag



Background—Limitations of Previous Methods

» Subgraph Quality: The subgraph's quality suffers when retrieved through simple string or semantic

matching, posing limitations for subsequent operations

» Graph-Text Misalignment: The misalighment between graph and text encoders presents a challenge
for PLMs to internalize the knowledge contained in the acquired subgraph, leading to reduced task

performance

» Uncontrolled Subgraph Size: To obtain sufficient relevant knowledge, the number of nodes in the

subgraph will expand dramatically with the increase of hop count, raising the burden of the model
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Motivation

» Subgraph Vector Database: To address the limitations of rule-based subgraph extraction methods that

may overlook critical nodes and result in uncontrollable subgraph size

» BFS-style Subgraph Sampling: To ensure complete neighbor information for each node and avoid the
blockage of the message-passing mechanism of GNNs caused by pruning edges linked to marginal

nodes

» Bidirectional Contrastive Learning: To overcome the challenge of misalignment between graph and text

encoders, which undermines the effectiveness of knowledge fusion and impacts task performance
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Model Architecture
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Sampled Subgraphs

» A bidirectional contrastive method is proposed to align the semantic space of graph and text encoders
» Transform the knowledge graph into a subgraph vector database
» Introduce a query enhancement strategy for better subgraph retrieval

» All the information retrieved is combined by an attention mechanism to bolster the reasoning ability of PLMs
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Graph-Text Alignment

» Motivation: Coordinate the embedding spaces of
graph and text encoders and fully harness the

respective strengths of text and KG

» Method:
» Generate training graph-text pairs with equivalent
semantics
» Employ a bidirectional contrastive learning

method to train the encoders of both modalities
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Construction of Graph-Text Pairs

» A BFS-style sampling strategy for subgraph construction, which initiates from the central node and
proceeds to sample neighbors hop-by-hop
» Textualize the subgraphs to construct synonymous text descriptions
» Convert all relation links into triplet descriptions: Map each relation type to a relation template and
concatenate the head concept, relation template, and tail concept as the description of each triplet

» Concatenate all descriptions to compose the final description

(hy,71,t1) Text; = hy @ map(ry) D t;
(hz,."’%' t2) Text, = h, @ map(r;) @ t; Text, @ Text, @@ Text,
(A, T, tn) Text, = h, @ map(n,) @ ¢,

BFS-style Subgraph Sampling Subgraph Triplets Textual Triplets Text
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Graph-Text Contrastive Learning

» GNN and PLM are utilized to encode the knowledge subgraphs and natural language descriptions to obtain

the corresponding representation
e; = Poolg(GNN(G;)),

h; = Poolr (PLM(s;)),

» To project the knowledge subgraph embedding and text embedding into the same semantic space, two

linear projection layers are designed as follows:
= Wge; + ba,

h; = Wrh; + br,
» Employ InfoNCE with in-batch negative sampling to align representations of two modalities bidirectionally

exp(sim(e;, h;)/T)

Lgor = —— Z log

= YL exp(sim(e;, hy)/7)
N
1 exp(stm(h;,e;)/T
rac =~ 37 g gploimlhis )/
i=1 Z _, exp(sim(h;, e;)/T)

Lor = (LazT + Lr26) o BIEED
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Subgraph Retrieval Module

» Subgraph vector database construction

» Query enhancement

» Subgraph retrieval

Subgraph Retrieval Module
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Database Construction

» BFS-style Sampling: We adopt a BFS-style subgraph sampling strategy which is the same as the graph-text

pairs construction, leveraging the analogy between BFS and the message-passing mechanism of GNNs

» Subgraph Vector: For each subgraph, we obtain its graph embedding e; and text embedding h;, and
combine them to form the subgraph vector:

L A

e; + h;)
2" el

gi = (

» Vector Database: We construct a subgraph vector database G = {gi}liill with all subgraph vectors
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Query Enhancement

» Challenge: Direct use of Q-A pair embeddings as queries may not align well with the pre-trained corpus,

affecting retrieval accuracy
» Enhancement: Retrieve question-related triplets from the KG and concatenate them with Q-A pairs

> Entity Linking: Apply entity linking to find entities in the question and options, and retrieve triplets

containing these entities

» Concatenation: Concatenate the retrieved fact triplets with the question and options, termed as s;

» Encoding: Use the aligned PLM to encode s; into t;, which serves as the enhanced query for subgraph

retrieval
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Subgraph Retrieval

» Retrieval: With the enhanced query t;, we retrieve relevant subgraph vectors from the subgraph vector

database G based on cosine similarity

» Top-k: We recall the top-k subgraph vectors with the highest similarities, denoted as G .,
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Prediction

> Integration: Integrate the retrieved subgraph vectors
through multi-head attention with t; as the query

» Score Prediction: Add the integrated representation
and the enhanced query, and feed them into a linear
layer to predict the score of the option

» Direct Inference: Since some questions are expected
to be answered based solely on the question context,
we also encode the Q-A pair directly to infer the score
without additional knowledge

» Final Score: The two scores are weighted and

summed to yield the final score

Prediction
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Experimental Setup

» Datasets
v' CommonsenseQA: 5-way multiple-choice QA dataset, including the official split and the in-house split
v" OpenBookQA: a 4-choice dataset to evaluate the science commonsense knowledge
v SociallQA: a 3-choice dataset to evaluate the understanding of commonsense social knowledge
v" PIQA: a 2-choice QA dataset regarding physical commonsense

v" RiddleSenseQA: a 5-choice QA dataset about commonsense riddles

Task Train Dev Test

CommonsenseQA official split | 9,741 1,221 1,140
CommonsenseQA in-house split| 8,500 1,221 1,241

OpenBookQA 4,957 500 500
SociallQA 33,410 1,954 -
PIQA 16,113 1,838 -
RiddleSenseQA 3,510 1,021 -

» Metrics: Accuracy
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Comparison with baselines

’ CommonsenseQA |

OpenBookQA

Methods

[THdev-Acc (%) IHtest-Acc (%)|RoBERTa-Large (%) AristoRoBERTa (%)

Fine-tuned LMs | 73.07 (£0.45) 68.69 (+0.56) |  64.80 (£2.37) 78.40 (£1.64)
+ RN 74.57 (£0.91) 69.08 (£0.21) 65.20 (£1.18) 75.35 (£1.39)
+ RGCN 72.69 (£0.19) 68.41 (£0.66) 62.45 (£1.57) 74.60 (£2.53)
+ GeonAttn 72.61 (£0.39) 68.59 (£0.96) 64.75 (£1.48) 71.80 (£1.21)
+ MHGRN 74.45 (£0.10) 71.11 (£0.81) 66.85 (£1.19) 80.60

+ QA-GNN 76.54 (£0.21) 73.41 (£0.92) 67.80 (£2.75) 82.77 (£1.56)
+ DGRN 78.20 74.00 69.60 84.10

+ GreaseLM 78.50 (40.50) 74.20 (£0.40) 68.80 (£1.75) 84.80

+ JointLK 77.88 (£0.25) 74.43 (£0.83) 70.34 (£0.75) 84.92 (£1.07)
+ GSC 79.11 (£0.22) 74.48 (£0.41) 70.33 (40.81) 86.67 (0.46)
+ SAFE 76.93 (£0.37) 74.03 (£0.43) 69.20 87.13

+ HamQA 76.88 73.91 71.12 84.59

+ DRAGON* - 76.00 72.00 -

+ DRAGON (w/o MLM)* - 73.80 66.40 -

+ DHLK* 79.39 (£0.24) 74.68 (£0.26) 72.20 (=£0.40) 86.00 (£0.79)

+ SEPTA (Ours)

|79.61 (£0.17) 74.78 (+0.23) |

72.33 (+£0.35)

87.37 (+£0.51)

» Our method can contribute performance gains to LMs

» SEPTA outperforms all baselines without additional corpus on both datasets

» Compared to baselines incorporating additional corpus, our method also achieves comparable performance
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Leaderboard

Methods Test-Acc (%) Methods Test-Acc (%)
RoBERTa [17] 72.1 Careful Selection [1] 72.0
RoBERTa+FreeLLB 72.2 AristoRoBERTa |6] 77.8
RoBERTa+ HyKAS 73.2 KF+SIR 80.0
RoBERTa+KE 73.3 AristoRoBERTa+ PG [30] 80.2
RoBERTa + KEDGN 74.4 AristoRoBERTa + MHGRN [9] 80.6
RoBERTa+MHGRN [9] 75.4 AristoRoBERTa+QA-GNN |[34] 82.8
RoBERTa+QA-GNN [34] 76.1 AristoRoBERTa+ GreaseLM [36] 84.8
RoBERTa+GSC [29] 76.2 AristoRoBERTa + GSC [29] 87.4
Albert 73.5 AristoRoBERTa+MVP-Tuning |11] 87.6
ALBERT+Path Generator |30)] 75.6 ALBERT + KB 81.0
ALBERT+HGN [9] 77.3 T5 83.2
UnifiedQA (11B) |14] 79.1 UnifiedQA (11B) |14] 87.2
RoBERTa+SEPTA (Ours) 76.6 AristoRoBERTa+SEPTA (Ours) 87.8

» Evaluate SEPTA on the official CommonsenseQA and OpenBookQA leaderboards

» Our method achieves results surpassing all baselines based on the identical PLM

» Exhibit comparative performance compared with methods with larger-scale parameters (e.g., UnifiedQA)
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Other Datasets

Methods SociallQA PIQA RiddleSenseQA
RoBERTa-Large 78.25 77.53 60.72
+ GconAttn 78.86 78.24 61.77
+ RN 78.45 76.88 62.17
+ MHGRN 78.11 77.15 63.27
+ QA-GNN 78.10 78.24 63.39
+ GreaseLM 77.89 78.02 63.88
+ GSC 78.61 78.40 64.07
+ SAFE 78.86 79.43 63.78
+ SEPTA (Ours) 79.21 80.85 67.62

» SEPTA consistently achieves superior performance
» This observation underscores the overall effectiveness of SEPTA in addressing various commonsense

reasoning datasets or tasks, demonstrating a unified methodology

@ BRRE | TuGrap)



Ablation Study

Ablation CommonsenseQA OpenBookQA

SEPTA 74.78 72.33

w/o alignment 69.83 (-4.95) 67.20 (-5.13)
w /o subgraph 72.34 (-2.44) 70.23 (-2.10)
w/o triplets 71.25 (-3.53) 69.67 (-2.66)
A= 1.0 74.13 (-0.65) 70.47 (-1.86)

» Four components are all crucial for SEPTA, and removing any part will result in a decrease in performance
» The performance drops the most significantly when we remove the graph-text alignment
» Removing either fact triplets or subgraph vectors will affect the performance

» Only using knowledge-enhanced representations for predictions (i.e. A=1.0) cannot achieve optimal results
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Low-Resource Setting

Methods CommonsenseQA OpenBookQA

5% 10% 20% 50% 80% 100% 5% 10% 20% 50% 80% 100%
RoBERTa-large 29.66 42.84 58.47 66.13 68.47 68.69 37.00 39.4 41.47 53.07 57.93 64.8
+ RGCN 24.41 43.75 59.44 66.07 68.33 68.41 38.67 37.53 43.67 56.33 63.73 62.45
+ GconAttn 21.92 49.83 60.09 66.93 69.14 68.59 38.60 36.13 43.93 50.87 57.87 64.75
+ RN 23.77 34.09 59.90 65.62 67.37 69.08 33.73 35.93 41.40 49.47 59.00 65.20
+ MHGRN 29.01 32.02 50.23 68.09 70.83 71.11 38.00 36.47 39.73 55.73 55.00 66.85
+ QA-GNN 32.95 37.77 50.15 69.33 70.99 73.41 33.53 35.07 42.40 54.53 52.47 67.80
+ GreaseLM 22.80 56.16 63.09 70.56 73.41 74.20 39.00 39.60 42.20 57.87 65.13 68.80
+ GSC 31.02 35.07 65.83 70.94 73.82 74.48 29.60 41.80 42.40 58.03 65.97 70.33
+ SAFE 36.45 56.51 65.16 70.72 73.22 74.03 38.80 41.20 44.93 58.33 65.60 69.20

+ SEPTA(Ours) 50.69 62.37 68.09 71.80 74.05 74.78 45.63 54.80 58.10 66.57 68.30 72.33

» SEPTA achieves promising performance in all settings

» It exhibits a trend where the performance improvement relative to other baselines is more significant

with fewer training
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Conclusion

» We propose a novel framework called Subgraph REtrieval Enhanced by GraPh-Text Alighnment (SEPTA)

for commonsense question answering (CSQA)

» SEPTA reframes the CSQA task as a subgraph vector retrieval problem and introduces a graph-text

alignment method to enhance retrieval accuracy and facilitate knowledge fusion for prediction

» Extensive experiments on five CSQA datasets demonstrate the effectiveness and robustness of the

SEPTA framework, outperforming SOTA approaches
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Future Works

» Pre-training Tasks: Explore more effective pre-training tasks for semantic alignment between graph

and text representations

» Larger Language Models: Apply the SEPTA framework to larger language models if sufficient

computational resources are available

» Other Tasks: Extend the SEPTA framework to other related tasks, such as node classification and link

prediction on text-attributed graphs
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Thanks for your listening!



