LEX | DBC Extended GQL Schema

Alastair Green
LDBC 18th TUC, Guangzhou

30 August 2024

ONE PROPERTY GRAPH QUERY LANGUAGE

THE GQL MANIFESTO

GQL Update - September 16, 2019

GQL Is Now a Global Standards Project alongside
SQL

LEX is an example
of work of the

GQL community /
in LDBC

LEX project: why we started

“Schema = types + constraints”: GQL has graph type, but no constraints
And graph types only support node and edge type subtyping by implication

In late 2022 we restarted work in LDBC on PG schema

LDBC Extended GQL Schema — LEX

A proposal for a concrete schema language to feed into GQL++

Design ideas from Neo4j contributions to WG3 in 2018-19
Results of work from the old PGS WG (2020-21) — PG-Schema paper, plus
SQL/JSON schema features, EERM and UML Class Diagrams, SHACL ...

Example: Type keys (identifiers): “key label sets” in GQL graph type «— LEX work

LEX project
direct inputs

Jul 2023

Introduction to GQL Schema design

Copyright © 2019 Neo4j Inc.

THIS PRESENTATION REPRESENTS PRELIMINARY DISCUSSION
WITHIN Neo4j Inc. THE MATERIAL PRESENTED HERE IS INTENDED FOR
INFORMATION PURPOSES ONLY AND MAY OR MAY NOT BE
INCORPORATED INTO ANY FUTURE PRODUCT.

Target: A UML class diagram in ASCII Art “schema patterns”

Node and relationship patterns that look like query patterns, gathered into a graph schema or type.
“Draw” the LDBC SNB data model with a keyboard.

(Person), (TagClass), (Tag),
(Message, Post), (Message, Comment),
(Forum),

PG-ScHEMA: Schemas for Property Graphs

RENZO ANGLES, Faculty of Engineering, Universidad de Talca, Chile
ANGELA BONIFATI, Lyon 1 University & Liris CNRS, France
STEFANIA DUMBRAVA, ENSIIE & SAMOVAR - Institut Polytechnique de Paris, France
GEORGE FLETCHER, Eindhoven University of Technology, Netherlands

ALASTAIR GREEN, LDBC, UK

JAN HIDDERS, Birkbeck, University of London, UK

BEI LI, Google, USA

Property Graph Schema

Element
Base

Type
Element
Type
Element Label
Key

ANSI INCITS sql-pg-2018-0056r1
ANSI INCITS DM32.2-2018-0195r1
ISO/IEC JTC1/SC32 WG3:BNE-022

Property 7 =~ 7 Property graph type
Graph | Propertys schema objects
| Graph |
. Type
o _us)
Vertex Edge
Type Type
Vertex Tail Head Edge
il : £l & El 5 Flomont
Type Type Type Type
Datatype Edge
RS Optionality Key

v L JSON
{X Schema

LEX project
reference points

© Overview
@) Getting Started
[Reference

) specification

E DataBase E1=WHRIZAA

$2&: http://database.guide/what-is-a-database-schema/

EHUEES, schema® (K “skee-muh” 8 “skee-mah”, HXNER) EIERERAY
X, BXPEE T schemaldx, BJIAERK(table). Fl(column), EHIELE!(data type).
X H(relationships). E(primary key). FMg(foreign key)E, HIREZER A IAB—1A

ZEIHIX R
] Albums v
Albumid INT
AlbumName VARCHAR(255)
——— DateReleased DATETIME =~ 55— — — — —
: Artistid INT F :
: & Genreld INT | |
| > :
+ +
] Genre v] Artists v
Genreld INT Atistid INT
Genre VARCHAR(255) ArtistName VARCHAR(255)
> >

Specification Docs Tools Blog

Specification

The current version is 2020-12! The previous version was 2019-09.

Ontology Modeling with SHACL.: Getting
Started

Holger Knublauch @
Lead Software Developer at TopQuadrant

November 21, 2023

LEX project: why we should keep going

neo4j$ (n: _Entity__ ")

All the obvious reasons why we need database and
dataset schema ... and newer ones like GraphRAG
and graph networks in ML

1. Schema-Guided Extraction: Define allowed entity types, relationship types,
connections in a schema. The LLM will only extract graph data that conforms t

Llamalndex * May 29, 2024

Introducing the Property Graph Index: A Powerful New

from llama_index.indices.property_graph import SchemalLlLMPathExtractor

Way to Build Knowledge Graphs with LLMs entities = Literal["PERSON", "PLACE", "THING"]
relations = Literal["PART_OF", "HAS", "IS_A"]
Knowledge Graphs schema = {

"PERSON": ["PART_OF", "HAS", "IS_A"I],
"PLACE": ["PART_OF", "HAS"I,
"THING": ["IS_A"],

Relational inductive biases, deep learning, and graph networks

Peter W. Battaglia!* Jessica B. Hamrick!, Victor Bapst!, kg_extractor = SchemaLLMPathExtractor(
Alvaro Sanchez-Gonzalez!, Vinicius Zambaldi!, Mateusz Malinowski!, Tlm=11m,
)))) possible_entities=entities,
possible_relations=relations,
kg_validation_schema=schema,

LEX project: ... and keep going

Technology Developer Learn Enterprise

Model data directly as entities with
attributes and relations

Designing your database requires nothing more than describing the real
things your data represents. This puts an end to ‘object-relational
mismatch’ You no longer need to think about your data in a different way
between your application and your database.

Relational Document

Properly unify with standard
record-oriented conceptual
modelling: EERM/UML...

and other techniques like
formal concept analysis, and
label and multi-label
classification (back to ML)

LEX project technical themes

Themes in 2023

m Use cases and requirements
m JSON Schema for property types
m Identifying types using labels

Current work in 2024, heading for 2025
m Refining JSON Schema integration (dialect spec, SQL/GQL datatypes)
m PG-Schema integration UML + keys integration
m “Polymorphic schema”: stating schema using supertypes (covariant schema patterns)
m Information Schema Graph there is no Information Schema in GQL
m Experimental Python library: working title is Grasch

Possible future work
m schema sub-graphs and transactions

m referential integrity, sub-graph constraints
m SHACL “levelling”

Foundation #1 GQL graph types

GQL has schema objects in a catalog directory, called graph types
A graph type contains two sets: node types and edge types GT = (NT, ET)
A node type is characterized by a content type

A content type is a record type where the fields are labels and property types: the type is
the disjoint union of a set of labels and a set of property types

An edge type is characterized by a content type and
orientation (directed or undirected, and if directed, direction)
node type of the endpoints of the edge

Graphs can be untyped, or in a graph type
A graph is conformant to a graph type if its elements are in a node type or an edge type

Foundation #2 PG-Schema

PG-Schema adds

m content types* independent of element types (“abstract” types)

m union and intersection typing: intersection types are extensions* (inheritance)
m strict and lax graph types

m extensible content types (open for labels, open for property types)

*content types are data record types; intersection is undefined if property type fields of the same name
have different data types, if defined, then intersection of content types is record “width subtyping”

Extension #1 JSON Schema

Allow database (GQL and SQL) types to be used as well as primitive JSON types

Plus
Nested property types
Typed structures (user-defined types)
Union types (e.g. NaN, +Inf, -Inf as well as numeric strings for floats)
Constraints on values of leaf nodes (ranges, string picture regexes)
Cross-field dependencies
Allows definition of domains (refinement types)

Oracle 23c allows this feature (proprietary extension to SQL)

Extension #1 JSON Schema (cont.)

A JSON database data type schema definition looks like this:

{

"Scomment": "We pretend here that // and /* */ comments are allowed in JSON
"Scomment": “schema: if we followed JSONC then they could be”
"$1d": "tag:1so0.o0rg,2023:JTC1.SC32.WG3:JSONSchemaDatabaseDialect:databaseTypes"
"Sdefs": {
"GQL .UNSIGNED_INTEGER_64" : { // database data type schema (DDS) name
"databaseType": "ISO/IEC DIS 39075 -- GQL unsigned 64-bit integer"
// prefix is external specification identifier/name,
// then the external spec’s name for the data type
"type": "integer", // JSON primitive type
"minimum”: 0, // optionally, JSON schema constraints which are permitted
// for the primitive type in question
"maximum": 18446744073709551615
}
// there will be many more small schemas defined under $defs,
/] one for each predefined SQL datatype and primitive GQL type

Extension #1 JSON Schema (cont.)

Consensus: PG features like labels, content to element type mappings, keys on element
types etc belong in GQL native schema DDL

s this the way of dealing with nested data?

Or is it only applicable to a GQL JSON datatype (which doesn't exist yet)?

Could this be shared across SQL and GQL?

Could facilitate use of JSON Path for hierarchical data (mixed path languages)
This already exists for SQL/PGQ

Using JSON Schema and JSON Path would increase developer familiarity

Extension #2 Type keys and aliases

“GQL is a structurally-typed language
Same set of labels, same set of property types => types have the same semantic

If we allow a subset of labels to functionally determine the whole content type then we have
a type key, which for a set of content types (graph type) identifies each type

If we have one label in the set then the type key is a type name

If we have syntactic sugar for the simple case of a named type, then we can induce a
canonical form where the name induces a label. The type name is then in the structural

type.”
Quote from my 2023 presentation at the 16th TUC on LEX

That is what happened. Names induce labels, label sets can be keys in GQL:2024

Information Schema Graph #1 Schema graph (arbitrary)

Two parts

Content (attribution) types lattice
Schema graphs, (a representation of a GQL graph type)

Audit SchemaObject @

Mapping of a
schema element
to a content type

Information Schema Graph #2 Catalog (tree)

It's like a filesystem: root and path names /like/this
The leaf nodes are GQL-schemas

They contain graphs and graph types

It's an optional part of a GQL implementation

It deals with the problem that the levels in a catalog tend to be influenced by physical
architecture (mySQL vs SQLServer to take two extremes)

Information Schema Graph #3 Type lattice (DAG)

Content Record types
Node Types °

Edge Types

=<
record subtypes (width and / \ x

depth) — node subtypes — \ /
edge subtypes /

Optional attributes \ /

Type keys (key label sets)

Experimental Python library Grasch (early, early days

GraphSchema.py

class TypelLatticeNodeIncidentEdges[ORDERABLE_TYPE]:...

class TypePoset(Generic[ORDERABLE_TYPE]):...

Create Catalog, Lattices, | | |
class TypelLatticeNodeIncidentEdges('Typelattice'[ORDERABLE_TYPE]):...
SChema GraphS @, > class JoinSemiTypelLattice(Generic[ORDERABLE_TYPE]):...

Sto re -th eser g ra p h S i n @, » class MeetSemiTypelLattice(Generic[ORDERABLE_TYPE]):...

K\ class TopHalfTypelLattice(JoinSemiTypelattice[ORDERABLE_TYPE]):...

class BottomHalfTypelLattice(MeetSemiTypelattice[ORDERABLE_TYPE]):...

I nteg rate J SO N SC h e m a @, > class TypelLattice(JoinSemiTypelLattice[ORDERABLE_TYPE], MeetSemiTypelattice[ORDERABLE_TYPE]):...
Consumer Of the TCK I class AnyNothingTypelattice(Typelattice [ORDERABLE_TYPE]):...

class ContentTypeInterface(Protocol):...

@total_ordering 11usages Alastai
class ContentType(Orderable, ContentTypelInterface):...

class ElementType(ContentTypeInterface):...
class NodeType(ElementType):...
class EdgeType(ElementType):...

class GraphTypeInterface(Protocol):...

LEX project papers presented to WG3 on 14 June 2023

Ideas for GQL Expansions (WG3:DCA-031) (LEX-036)*
LDBC Extended Schema (LEX) Overview (WG3:DCA-036) (LEX-035)

LEX Working Group - Use Case Work Read-out
(WG3:DCAO030r1) (LEX-031)

Introducing PG-Schema (WG3:DCA-037) (LEX-034)

Types, subtypes, labels, names and aliases in a Graph Schema Language (GSL).
(WG3:DCA-038r2) (LEX-027r3)

A Database Dialect of JSON Schema (WG3:DCA-039r1) (LEX-030r1)

Schema sub-graphs and incremental transactional updates of graph databases
(DCA045r1) (LEX-033r1) *These links work for LDBC members, see the next page

https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6275247041/download/LEX-036%20dca031%20Ideas%20for%20GQL%20Expansions.pdf?disposition=attachment
https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6254816225/download/dca036%20-%20LEX-035%20LDBC%20Extended%20GQL%20Schema%20(LEX)%20Overview.pdf?disposition=attachment
https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6288646036/download/ISO-IEC%20JTC%201-SC%2032-WG%203_dca030r1%20LEX-031r1%20LDBC%20Use%20Case%20Work%20Read%20Out.pdf?disposition=attachment
https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6254905381/download/LEX-034%20PG-Schema%20introduction.pdf?disposition=attachment
https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6252054958/download/dca038r1%20--%20LEX-027r3%20--%20Types,%20subtypes,%20labels,%20names%20and%20aliases%20in%20a%20Graph%20Schema%20Language%20%20(GSL)..pdf?disposition=attachment
https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6288624024/download/dca039r1%20--%20LEX-030r1%20--%20A%20Database%20Dialect%20of%20JSON%20Schema.pdf?disposition=attachment
https://storage.3.basecamp.com/4100172/buckets/29670095/uploads/6288628878/download/dca045r1%20-%20LEX-033r1%20--%20Schema%20sub-graphs%20and%20incremental%20transactional%20updates%20of%20graph%20databases%20_%20Future%20work%20in%20LEX.pdf?disposition=attachment

Joining Linked Data Benchmark Council

Individuals can join LDBC and gain access to this work and to the draft specifications of
GQL and SQL/PGQ without charge. Send e-mail to info@ldbcouncil.org.

Remaining slides from 2022 provide some additional context on GQL gaps/futures

mailto:info@ldbcouncil.org

Appendix

“GQL 2.0: A Technical Manifesto’, June 2022, LDBC TUC

Some of the slides from that presentation follow talking about sub-graph extraction (and
compositional graph-projecting queries)

GPM: does it produce sub-graphs?

For semi-political and semi-technical reasons people don't like talking about graph pattern
matching in PGQ/GQL in the following (classical) way

Sub-graph

Pattern
graph
Data graph
MATCH

Or does it produce tables?

Pattern
graph

Data graph

MATCH

Path set with
binding variables

organized as a
TABLE!*

W

’h V\NY/
\

THE

YORKER

What happens in PGQ is this

;z[:)ehm Path set
Data graph with binding Table
variables
MATCH SELECT

What will also happen in GQL (ask Keith when) is this

gf::;m Path set
Data graph with binding Sub-graph
variables

MATCH

PROJECT

And what really needs to happen in GQL is this — views

Data graph’

variables summarization)

Pattern subtract
graph Path set and add graph
Data graph with binding elements (inc

MATCH

Back to pattern graphs and sub-graphs

Pattern graphs (graph patterns in GPML-speak) use variables to join paths to encode a graph

And in querying that means: encode or express a matched sub-graph

Sub-graph

Pattern
graph
Data graph
MATCH

Of course paths are degenerate graphs, and edges are degenerate paths and nodes are
degenerate edges

