GQL and Its Implementation
(@NebulaGraph

Xuntao Cheng
Staff Engineer, Vesoft Inc.

Before GQL

* NebulaGraph has been an open-source distributed graph database
since 2018

* Primarily targeting at graph OLTP or latency-sensitive graph queries,
with home-grown syntax

nebula> GO FROM "player106" OVER follow REVERSELY \
YIELD src(edge) AS destination;

* Some compatibility with openCypher | “playertor” |

| "player102" |

Users get stuck with writing/debugging
bizarre queries

$top_stories = YIELD "xxxxxxxxx” AS id

l,GO FROM $-.id OVER r 1?tionship,WHE§E relatignihi?.like > @ AND relationship.hi%hlight_time > 20 AND relationship.like >
h;mﬁiggﬂg(g?$gtlme(now)) - duration({days: 14})) YIELD DISTINCT relationship._dst AS id, relationship.highlight_time AS
19 —

| ORDER BY $-.highlight_time DESC
| LIMIT 10;

$final_user = GO FROM $top_stories.id OVER relationship REVERSELY WHERE relationship.like > @ AND relationship. like >
timestamp(datetime(now()) — duration(da¥s: 1?%%& AND relationship.highlight_time > 2@ YIELD DISTINCT $top_stories.id as
story_id, relationship._dst as user_id LIMIT 1;

$shared_stories = GO FRQOM %final_user.user id OVER relationship WHERE $final_user.,user_id != $egoNode AND .
relationship._dst != $final_user-story_id AND relatlonshlg.ll e > 0 AND relaTionship.like > timéstamp(datetime(now()) -
duration({days: 14})) AND relationship.highlight tlm? > 20 YIELD $final_user.story_id AS top_level_id, $final_user.user_id
AS eng_user_id, relationship._dst AS sharée_id LIMIT [20000]

| GROUP BY $—.top_level_id, $-.share_id YIELD $-.top_level_id AS top_level_id, $-.share_id AS share_id, count($-
.eng_user_id) AS Comm_user_cnt

| YIELD $-.top_level_id AS top_level_id, $-.share_id AS share_id, $-.comm_user_cnt AS comm_user_cnt

| ORDER BY $-.comm_user_cnt DESC

| LIMIT 10@;$shar?d_prop§ = FETCH PROP.ON storx $shared_stories.share_id YIELD properties(vertex).story_version AS
story_version, id(vertex) AS share_id;YIELD $shared_stories.top_level”id AS top_level_id, $shared_stori€s.share_id AS

share_id, $shared stories.comm_user_cnt AS comm_user_cnt, $shared_props.story_version AS story_version FROM
$shared_stories INNER JOIN $shared_props ON $shared_stories.share_id == $shared_props.share_id;

MATCH queries were slow

* No modern query runtime, data structure, etc.

* Insufficient optimization techniques

* High overhead when querying the KV-based storage recursively for
matching long path patterns

How we view GQL

* A systematic & standardized graph-native query language.

 Users shall only need to declare patterns, not the detailed procedure to
retrieve data.

* Potential to express simple or complex path patterns and graph
algorithms in the same language, probably with some further
extensions.

Our GQL database product

* Same distributed architecture, but with the new GQL frontend and a
new kernel.

* We prioritize the GQL features that are necessary for LDBC queries.

* We use the LDBC SNB Interactive benchmark as our nightly
regression test workload.

* Currently in RC, GA in two months.

Key kernel features

Vectorized and Arrow-compatible data structure
Zero-copy RPC
Pipelined and vectorized execution runtime

Sub-query plan pushdown
In_memory graph NebulaGraph v5.0 v.s. v3.7 (query latency, 99-th percentile)

~3x performance improvement for LDBC
Reduced the memory footprint by 60-90%

Speedup

Still working on more projects QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QI0 QI QI2 QI3 QI4

LDBC SNB Interactive queries

Lifecyle of a GQL query

GQL query

»

Parser

AST

>

-~

Metadata

Validator

Analyzed

. AST
(— & Planner

Query lifecycle

Raw
Plan

>

‘\\\\\“

Optimizer

Executable
Optimized Pipelines
Plan

Execution
engine

» Query result

Execution Engine Overview

- -

Executable Pipelines

CallBackSink

Repartition Gather

Local
Exchange

Local

Partition COERt

' Partition

Local N
Exchange

JoinBridge

HashProbe g

Project
(TypedExpr)

HashBuild

\ (ExecExpr)
v Dynamic . g

\ NodeScan ™x Filter

\ i‘ss‘-
“\ K—J IR EdgeScan

- -

Execution Engine

L vy -

Sub-query push-down

- e — - — e —— - — - —— - - - ——— - - ————————— - — .

Local CallBack
Exchange Sink

I

1

1

I

: : Local vt -Cal’!.Back
| . KR Exchange Sink
; i

1

I

I

|

\

CallBackSink

' Repartition

Merge

) Graph |
\ Execution P
Yo B Engine 5
‘‘‘‘‘ nrpe ¢ T
/ \\
i CallBack Cal'LBac 3
: Sink | Sink |
| I
| Storage !
I
I Execution)
| Engine :
| i} |
: NodeScan Ji{ NodeScan :
|\ ,’
A\ /
N 7’

- - - ———

Nebula Vectors

* Arrow-like vectorized
layouts for various data

types

* Organized vectors 1n row-
group batches for batched
processing

* Zero-copy RPC between
both the computing/storage
nodes as well as the clients
and the servers

VectorTable data structure

VectorTable

Table metadata

VectorBatch

-

Batch metadata

Vector

Vector.]

nVec+or me+ada+a‘ -f-=

'|‘Vé¢+or me+ada+a?‘

Chunk ’

VectorBatch

Batch metadata

Vector Vector
‘Vec’ror me+aala+c:n Vector metadata I
Chunk

’ Chunk

Vector

]Vec+or metadata b

7 Chunk

Internal messages

e e [

Metadata IM

5]

Table metadata]

3| VectorBatch metadata |

Vector Data IM

Chunk

J

Vector Data IM

Chunk

Vector Data IM

Chunk

Some language extensions we’ve made

TABLE t {id, u8, f, I} = (1, 2, 1, [1, 2])
° Tabular lnserts USE insert cast

FORTrIN t
INSERT (@n {id: r.id, u8: r.ug, f: r.f, l: r.1})

s MATCH by node/edge type MATCH (a@person) WHERE a.id = r.src
MATCH (b@person) WHERE b.id = r.dst

* Graph projection & temporary graphs

CREATE GRAPH PROJECTION proj_graph_2 OF job_graph 1 AS
VALUE { USE job_graph_1 MATCH (v:Person)-[e:WORK_FOR]-

>(v1:Company) RETURN GRAPH PROJECTION { v(name),
vl(name, revenue) } }

Thanks.

