
GQL and Its Implementation
@NebulaGraph

Xuntao Cheng
Staff Engineer, Vesoft Inc.

Before GQL

• NebulaGraph has been an open-source distributed graph database
since 2018

• Primarily targeting at graph OLTP or latency-sensitive graph queries,
with home-grown syntax

• Some compatibility with openCypher

Users get stuck with writing/debugging
bizarre queries
$top_stories = YIELD ”xxxxxxxxx” AS id
| GO FROM $-.id OVER relationship WHERE relationship.like > 0 AND relationship.highlight_time > 20 AND relationship.like >
timestamp(datetime(now()) - duration({days: 14})) YIELD DISTINCT relationship._dst AS id, relationship.highlight_time AS
highlight_time
| ORDER BY $-.highlight_time DESC
| LIMIT 10;
$final_user = GO FROM $top_stories.id OVER relationship REVERSELY WHERE relationship.like > 0 AND relationship.like >
timestamp(datetime(now()) - duration({days: 14})) AND relationship.highlight_time > 20 YIELD DISTINCT $top_stories.id as
story_id, relationship._dst as user_id LIMIT [100];
$shared_stories = GO FROM $final_user.user_id OVER relationship WHERE $final_user.user_id != $egoNode AND
relationship._dst != $final_user.story_id AND relationship.like > 0 AND relationship.like > timestamp(datetime(now()) -
duration({days: 14})) AND relationship.highlight_time > 20 YIELD $final_user.story_id AS top_level_id, $final_user.user_id
AS eng_user_id, relationship._dst AS share_id LIMIT [20000]
| GROUP BY $-.top_level_id, $-.share_id YIELD $-.top_level_id AS top_level_id, $-.share_id AS share_id, count($-
.eng_user_id) AS comm_user_cnt

| YIELD $-.top_level_id AS top_level_id, $-.share_id AS share_id, $-.comm_user_cnt AS comm_user_cnt
| ORDER BY $-.comm_user_cnt DESC
| LIMIT 100;$shared_props = FETCH PROP ON story $shared_stories.share_id YIELD properties(vertex).story_version AS
story_version, id(vertex) AS share_id;YIELD $shared_stories.top_level_id AS top_level_id, $shared_stories.share_id AS
share_id, $shared_stories.comm_user_cnt AS comm_user_cnt, $shared_props.story_version AS story_version FROM
$shared_stories INNER JOIN $shared_props ON $shared_stories.share_id == $shared_props.share_id;

MATCH queries were slow

• No modern query runtime, data structure, etc.

• Insufficient optimization techniques

• High overhead when querying the KV-based storage recursively for
matching long path patterns

• …

How we view GQL

• A systematic & standardized graph-native query language.

• Users shall only need to declare patterns, not the detailed procedure to
retrieve data.

• Potential to express simple or complex path patterns and graph
algorithms in the same language, probably with some further
extensions.

Our GQL database product

• Same distributed architecture, but with the new GQL frontend and a
new kernel.

• We prioritize the GQL features that are necessary for LDBC queries.

• We use the LDBC SNB Interactive benchmark as our nightly
regression test workload.

• Currently in RC, GA in two months.

Key kernel features
• Vectorized and Arrow-compatible data structure
• Zero-copy RPC
• Pipelined and vectorized execution runtime
• Sub-query plan pushdown
• In-memory graph
• …

• ~3x performance improvement for LDBC
• Reduced the memory footprint by 60-90%

• Still working on more projects

Lifecyle of a GQL query

Execution Engine Overview

Sub-query push-down

Nebula Vectors
• Arrow-like vectorized

layouts for various data
types

• Organized vectors in row-
group batches for batched
processing

• Zero-copy RPC between
both the computing/storage
nodes as well as the clients
and the servers

Some language extensions we’ve made

• Tabular inserts

• MATCH by node/edge type

• Graph projection & temporary graphs

TABLE t {id, u8, f, l} = (1, 2, 1, [1, 2])
USE insert_cast
FOR r IN t
INSERT (@n {id: r.id, u8: r.u8, f: r.f, l: r.l})

MATCH (a@person) WHERE a.id = r.src
MATCH (b@person) WHERE b.id = r.dst

CREATE GRAPH PROJECTION proj_graph_2 OF job_graph_1 AS
VALUE { USE job_graph_1 MATCH (v:Person)-[e:WORK_FOR]-
>(v1:Company) RETURN GRAPH PROJECTION { v(name),
v1(name, revenue) } }

Thanks.

