
The SQL/PGQ Standard: SQL support for
property graphs

Oskar van Rest

Product Development – Oracle Property Graph

18th LDBC TUC Meeting, 30 August 2024

These slides are adopted from the same-titled presentation at the Knowledge Graph Conference 2024 by Jan
Michels (chair of INCITS Data Management (DM32), and the DM32 SQL/PGQ Expert Group)

Agenda

1. What is the SQL Standard?

2. What is SQL/PGQ?

3. Capabilities of SQL/PGQ

4. Possible future extensions

2 Copyright © 2024, Oracle and/or its affiliates

What is the SQL Standard? (SELECT … FROM … WHERE…)

Well-known de jure database language standard

• ISO standard (ISO/IEC 9075) developed collaboratively by a number of national bodies (USA, UK, Germany,
Japan, etc.)

• National body standards identical to the ISO standard

• 11 parts:

• Framework, Foundation, Schemata (specify “core” functionality; e.g., DDL, DML, etc.)

• CLI, PSM, OLB, JRT, MED, XML, MDA, PGQ

Mature standard, but still evolving

• Initial version published in 1986 (US) and 1987 (ISO)

• Several revisions since: 1989/92/99, 2003/08/11/16

• Most recent: SQL:2023

Many implementations – with varying degrees of conformance

Large number of applications

3 Copyright © 2024, Oracle and/or its affiliates

Why integrate with SQL?

Data is already stored in relational databases

• Tables model vertices and edges

• Table columns model properties

SQL has powerful (analytical) functionality

• No need to duplicate functionality in a stand-alone property graph database

• E.g., GROUP BY, row pattern matching, window/analytics functions, etc.

• E.g., security model, transactions, manageability, metadata

Easily join graph data with relational (non-graph) data

• No need to ship data from graph system to relational system or vice versa

Graph definition in SQL dictionary (along with SQL schema definition)

4 Copyright © 2024, Oracle and/or its affiliates

What is SQL/PGQ?

Part of ANSI/ISO SQL standard: ISO/IEC 9075-16 (SQL/PGQ – Property Graph Queries)

Property graph - first class database object

• View-like object

• Created using DDL statements based on existing relational tables
• Tables hold data representing vertices & edges

• No restriction on the number of vertex and edge tables in a given graph

• No restriction on the number of graphs in a database

• Queried using new GRAPH_TABLE operator

Primarily aimed at supporting graph querying over existing schemas

Data Model + DDL

Graph Pattern Matching + SQL query syntax

Integrates well with the remainder of SQL

5 Copyright © 2024, Oracle and/or its affiliates

Graph Application Example: Anti-Money Laundering (AML)

Anti-Money Laundering (AML)

• A big application in financial domain

• Detect and report suspicious activity including offenses
to money laundering

Graph is very useful in building AML solutions

• Money laundering activities are spread across many
transactions between multiple entities

• Need to gather up actives that look suspicious
individually and analyze inter-connections among
those

6 Copyright © 2024, Oracle and/or its affiliates

Sample Graph Data – Underlying Tables

CID NAME CITY

100 Joe San Jose

200 Jane Santa

Clara

300 Jeremy San

Francisco

400 Jessica Redwood

Shores

500 Fletcher San Jose

AID

10

20

30

40

50
OID CID AID SINCE

110 100 10 1/1/2019

220 200 20 2/2/2019

330 300 30 3/3/2019

440 400 40 4/4/2019

550 500 50 5/5/2019

510 500 10 1/1/2019

TID FROM_ID TO_ID WHEN AMOUNT

102001 10 20 1/1/2020 5000

103001 10 30 1/1/2020 15000

104001 10 40 1/1/2020 20000

105001 10 50 1/1/2020 25000

304001 30 40 1/2/2020 11000

305001 30 50 1/2/2020 4000

403001 40 30 1/3/2020 15000

305002 30 50 1/3/2020 14000

customers

accounts

owns

transfers

7 Copyright © 2024, Oracle and/or its affiliates

Property Graph Definition (1)

CREATE PROPERTY GRAPH aml

 VERTEX TABLES (accounts AS account

 , customers

 LABEL customer PROPERTIES (cid, name, city))

EDGE TABLES (owns SOURCE customers DESTINATION account

PROPERTIES (since)

, transfers

 SOURCE KEY (from_id) REFERENCES account (aid)

 DESTINATION KEY (to_id) REFERENCES account (aid)

 LABEL transfers PROPERTIES (when, amount))

account

customer

owns

transfers

Explicit label and properties
options for customer

Defaults apply for label
and all properties.

Columns when and amount are
exposed as properties. Columns tid,
from_id, and to_id are not.

8 Copyright © 2024, Oracle and/or its affiliates

Vertex and edge labels

Property Graph Definition (2)

Existing tables (or views): customers, accounts, owns, transfers

User can specify options for

• Labels (1 or more per vertex/edge table)

• Properties (0 or more per label), can rename properties

• Keys (single or multi-column key)

If not specified, defaults apply:

• Single label defaults to table name/alias

• All (non-hidden) columns are exposed as properties for a given label

• Keys are inferred from primary/foreign keys of underlying tables.

• PK-FK determines connection between vertices via edges (e.g., customer –[owns]-> account)

User can mix and match within a single PG definition:

• Explicit options, and

• Implicit defaults

9 Copyright © 2024, Oracle and/or its affiliates

Sample Graph Data

C100

C200

C400

C300

C500

A10

A20

A40

A30

A50

owns owns owns

owns

owns

owns

transfers
$25000

transfers
$5000

transfers
$20000

transfers
$15000

transfers
$11000

transfers
$15000

transfers
$4000

transfers
$14000

10 Copyright © 2024, Oracle and/or its affiliates

New operator applied to graph named
aml, returns table

Querying PGs – Example 1

SELECT gt.cid, gt.name, gt.city, gt.amount
FROM GRAPH_TABLE (aml
 MATCH
 (c1 IS customer) -[IS owns]->
 (IS account) -[t1 IS transfers]->
 (IS account) <-[IS owns]- (c2 IS customer)
 WHERE c1.cid = 100
 AND t1.amount > 10000
 COLUMNS (c2.cid
 , c2.name
 , c2.city
 , t1.amount)
) gt

Retrieve the info of all customers who got more
than $10,000 from customer 100.

COLUMNS defines the shape of the
output table. Properties projected
out of the MATCH.

Edge pattern
enclosed in -[]->

Vertex pattern
enclosed in ()

11 Copyright © 2024, Oracle and/or its affiliates

Example 1 - Output

CID NAME CITY AMOUNT

300 Jeremy San Francisco 15000

400 Jessica Redwood Shores 20000

500 Fletcher San Jose 25000

12 Copyright © 2024, Oracle and/or its affiliates

SQL/PGQ Pattern Matching Cheat Sheet – Vertex Pattern (1)

Matches a single vertex

Enclosed in parentheses ()

• ASCII art for a circle drawn around a vertex

Three (optional) components:

• Vertex graph pattern variable

• Label expression (introduced by the keyword IS)

• (local) WHERE clause to specify a condition (an SQL predicate)

13 Copyright © 2024, Oracle and/or its affiliates

SQL/PGQ Pattern Matching Cheat Sheet – Vertex Pattern (2)

()

• None of the three optional components is present

• Empty vertex pattern matches any vertex without restrictions

(C)

• Vertex pattern has only a vertex graph pattern variable: C

• Pattern matches any vertex, which can then later be referred to by
the pattern variable

(IS customer)

• Vertex pattern has only a label: customer

• Pattern matches only those vertices that have the label customer

(C IS customer)

• Vertex pattern has a vertex graph pattern variable: C

• Vertex pattern has a label: customer

• Pattern matches any vertex that has a label customer, can then
later be referred to by the pattern variable C

(V WHERE V.id = 12345)

• Vertex pattern has a vertex graph pattern variable: V

• Vertex pattern has a WHERE clause that specifies a condition

• Pattern matches any vertex whose property id equals 12345

(C IS customer WHERE C.first_name = 'Joe')

• Vertex pattern has a vertex graph pattern variable: C

• Vertex pattern has a label: customer

• Vertex pattern has a WHERE clause that specifies a condition

• Pattern matches any vertex that has a label customer and whose
property first_name equals ‘Joe’

14 Copyright © 2024, Oracle and/or its affiliates

SQL/PGQ Pattern Matching Cheat Sheet – Edge Pattern (1)

Matches a single edge

Enclosed in arrow tokens

Three (optional) components (same as in vertex pattern):

• Edge graph pattern variable

• Label expression (introduced by the keyword IS)

• (local) WHERE clause to specify a condition (an SQL predicate)

Two (x3) variants:

directed pointing to the
right

directed pointing to
the left

Any edge (pointing
right or left)

Brackets to enclose
optional components

-[]-> <-[]- -[]-

No filler -> <- -

15 Copyright © 2024, Oracle and/or its affiliates

SQL/PGQ Pattern Matching Cheat Sheet – Edge Pattern (2)

->

• Edge pattern that matches any (outgoing) edge

• None of the three optional components can be specified

-[]->

• Same as above but any of the four optional components could be
specified between the brackets

-[E]->

• Matches any (outgoing) edge and specifies pattern variable E

• One can refer to this edge later in the query using the pattern
variable E

-[IS knows]->

• Matches any (outgoing) edge that has a label knows

-[E IS owns]->

• Matches any (outgoing) edge that has a label owns, can then later
be referred to by the pattern variable E

-[E WHERE E.since = '1999']->

• Matches any (outgoing) edge whose property since equals ‘1999’.

-[E IS knows WHERE E.since = '1999']->

• Matches any (outgoing) edge that has a label knows and whose
property since equals ‘1999’.

16 Copyright © 2024, Oracle and/or its affiliates

Variable-length Path Patterns

Quantification is used to express variability/repetition in the pattern.

Uses postfix quantifiers:

• ? — 0 or 1 iterations

• { n } — exactly n iterations (n > 0)

• { n, m } — between n and m (inclusive) iterations (0 <= n <= m, 0 < m)

• { , m } — between 0 and m (inclusive) iterations (m > 0)

Additionally:

• { n, } — n or more iterations (n >= 0)

• * — 0 or more iterations

• + — 1 or more iterations

Dangerous, if graph contains cycles
• Query has the potential to not terminate and/or produce infinite results

• Need to put in safeguards to ensure termination

17 Copyright © 2024, Oracle and/or its affiliates

Querying PGs – Example 1a Retrieve the info of all customers who got
more than $10,000 from customer 100 via 1
intermediary.

SELECT gt.cid, gt.name, gt.city, gt.amount1, gt.amount2
FROM GRAPH_TABLE (aml
 MATCH
 (c1 IS customer) -[IS owns]->
 (IS account) -[t1 IS transfers]->
 (IS account) -[t2 IS transfers]->
 (IS account) <-[IS owns]- (c2 IS customer)
 WHERE c1.cid = 100
 AND t1.amount > 10000
 AND t2.amount > 10000
 COLUMNS (c2.cid
 , c2.name

 , c2.city
 , t1.amount AS amount1

 , t2.amount AS amount2)
) gt

18 Copyright © 2024, Oracle and/or its affiliates

CID NAME CITY AMOUNT1 AMOUNT2

400 Jessica Redwood Shores 15000 11000

300 Jeremy San Francisco 20000 15000

500 Fletcher San Jose 15000 14000

Output

Querying PGs – Example 2

SELECT DISTINCT gt.cid, gt.name, gt.city
FROM GRAPH_TABLE (aml
 MATCH
 (c1 IS customer) -[IS owns]->
 (IS account) -[IS transfers]- {1,4}
 (IS account) <-[IS owns]- (c2 IS customer)
 WHERE c1.cid = 500
 COLUMNS (c2.cid
 , c2.name
 , c2.city)
) gt

Retrieve the info of all unique customers who are
connected to fraudster 500 within four hops via
money transfers (incoming, outgoing, or both).

Repeating edge
(1 to 4 times)

19 Copyright © 2024, Oracle and/or its affiliates

Querying PGs – Example 2a

SELECT gt.cid, gt.name, gt.city, MIN(gt.hops)
FROM GRAPH_TABLE (aml
 MATCH
 (c1 IS customer) -[IS owns]->
 (IS account) -[t1 IS transfers]- {1,4}
 (IS account) <-[IS owns]- (c2 IS customer)
 WHERE c1.cid = 500
 COLUMNS (c2.cid
 , c2.name
 , c2.city
 , COUNT (t1.when) AS hops)
) gt
GROUP BY gt.cid, gt.name, gt.city

Retrieve the info of all customers who are
connected to fraudster 500 within four hops via
money transfers (incoming, outgoing, or both),
and their closest distance from 500.

Aggregate function
inside COLUMNS
clause.

20 Copyright © 2024, Oracle and/or its affiliates

Querying PGs – Example 3

SELECT DISTINCT gt.cid, gt.name, gt.city, gt.min_hops
FROM GRAPH_TABLE (aml
 MATCH
 (c1 IS customer) -[IS owns]->
 (IS account) -[t1 IS transfers]->*
 (IS account) <-[IS owns]- (c1)
 KEEP ANY SHORTEST
 COLUMNS (c1.cid
 , c1.name
 , c1.city
 , COUNT(t1.when) AS min_hops)
) AS gt

Find the (shortest) loops where money flows
back to the original sender (not necessarily
the same account).

Kleene * means 0 to
unbounded iterations

SHORTEST makes
an unbounded upper
limit computable.

21 Copyright © 2024, Oracle and/or its affiliates

SQL/PGQ Pattern Matching Cheat Sheet – KEEP clause

Path selector

• ALL (default)

• ANY

• ANY k

• ALL SHORTEST

• ANY SHORTEST

• SHORTEST k

Any combination of path selector plus path restrictor is permitted.*

For example:

• KEEP ANY TRAIL

• KEEP SHORTEST 10 ACYCLIC PATHS

Optionally suffixed with PATH/PATHS keyword.

Path restrictor

• WALK (default) — no filtering taking place

• TRAIL — filters paths with repeated edges

• ACYCLIC — filters paths with repeated vertices

• SIMPLE — filters paths with repeated vertices
 unless repeated vertices are the first
 and last in path

22 Copyright © 2024, Oracle and/or its affiliates
* With necessary safeguards to guarantee termination in case of unbounded quantifiers.

SQL/PGQ Number of Rows Per Match

ONE ROW PER VERTEX and ONE ROW PER STEP allow for unnesting/normalizing of path data.

Graph Table Rows Clause

• ONE ROW PER MATCH — the default
 produces one row per match

• ONE ROW PER VERTEX (v) — declares a single iterator vertex variable
 produces one row per vertex

• ONE ROW PER STEP (v1, e, v2) — declares an iterator vertex variable, an iterator edge variable, and
 another iterator vertex variable
 produces one row per step (= a vertex-edge-vertex triple)

23 Copyright © 2024, Oracle and/or its affiliates

Querying PGs – Example 4

SELECT *
FROM GRAPH_TABLE (aml
 MATCH
 (c1 IS customer) -[IS owns]->
 (IS account) -[t1 IS transfers]->+
 (IS account) <-[IS owns]- (c1)
 KEEP ALL SIMPLE PATHS
 WHERE c1.cid = 500
 ONE ROW PER STEP (v1, e, v2)
 COLUMNS (MATCHNUM() AS matchnum
 , ELEMENT_NUMBER(e) AS elemnum
 , v1.aid AS from_acct
 , e.amount
 , v2.aid AS to_acct)
)
WHERE amount IS NOT NULL /* gets rid of ‘owns’ edges */
ORDER BY matchnum, elemnum

Find all simple paths from fraudster 500 back to itself.
Output all account numbers and transaction amounts
along paths.

24 Copyright © 2024, Oracle and/or its affiliates

ONE ROW PER STEP outputs one row for each step in a
path (a step is a vertex-edge-vertex triple)

SIMPLE means no repeated vertices allowed
other than first+last (c1 in this case)

WHERE clause after KEEP clause specifies a postfilter*

* For this query the result is the same no matter if the filter is a prefilter or a postfilter, but that is not generally the case.

Example 4 - Output

25 Copyright © 2024, Oracle and/or its affiliates

MATCHNUM ELEMNUM FROM_ACCT AMOUNT TO_ACCT

1 4 10 15000 30

1 6 30 4000 50

2 4 10 15000 30

2 6 30 14000 50

3 4 10 20000 40

3 6 40 15000 30

3 8 30 4000 50

4 4 10 2000 40

4 6 40 15000 30

4 8 30 14000 50

5 4 10 25000 50

path #1 has 2 transfers edges

path #2 has 2 transfers edges

path #3 has 3 transfers edges

path #4 has 3 transfers edges

path #5 has 1 transfers edge

Possible future extensions to SQL/PGQ

There are ideas and some initial write-ups for standardizing additional features.

Additional path selectors

• For example: cheapest, minimal, maximal path

Conditions that cross iterations of a quantifier

• LDBC Financial Benchmark example: find a path of transactions where the timestamp keeps increasing for each
two consecutive edges

Optional pattern matching

• Like left outer join

Exporting vertices, edges, paths, or entire matches to JSON

• Example use case: graph visualization based on graph elements returned from a query

26 Copyright © 2024, Oracle and/or its affiliates

[Date]

Thank you

27 Copyright © 2024, Oracle and/or its affiliates

https://www.iso.org/standard/79473.html

	All slides
	Slide 1: The SQL/PGQ Standard: SQL support for property graphs
	Slide 2: Agenda
	Slide 3: What is the SQL Standard? (SELECT … FROM … WHERE…)
	Slide 4: Why integrate with SQL?
	Slide 5: What is SQL/PGQ?
	Slide 6: Graph Application Example: Anti-Money Laundering (AML)
	Slide 7: Sample Graph Data – Underlying Tables
	Slide 8: Property Graph Definition (1)
	Slide 9: Property Graph Definition (2)
	Slide 10: Sample Graph Data
	Slide 11: Querying PGs – Example 1
	Slide 12: Example 1 - Output
	Slide 13: SQL/PGQ Pattern Matching Cheat Sheet – Vertex Pattern (1)
	Slide 14: SQL/PGQ Pattern Matching Cheat Sheet – Vertex Pattern (2)
	Slide 15: SQL/PGQ Pattern Matching Cheat Sheet – Edge Pattern (1)
	Slide 16: SQL/PGQ Pattern Matching Cheat Sheet – Edge Pattern (2)
	Slide 17: Variable-length Path Patterns
	Slide 18: Querying PGs – Example 1a
	Slide 19: Querying PGs – Example 2
	Slide 20: Querying PGs – Example 2a
	Slide 21: Querying PGs – Example 3
	Slide 22: SQL/PGQ Pattern Matching Cheat Sheet – KEEP clause
	Slide 23: SQL/PGQ Number of Rows Per Match
	Slide 24: Querying PGs – Example 4
	Slide 25: Example 4 - Output
	Slide 26: Possible future extensions to SQL/PGQ
	Slide 27: Thank you

