W 0 AN /s AR ORI

\

EL W

ORACLE

The SQL/PGQ Standard: SQL support for
property graphs

Oskar van Rest
Product Development — Oracle Property Graph

18th LDBC TUC Meeting, 30 August 2024

These slides are adopted from the same-titled presentation at the Knowledge Graph Conference 2024 by Jan
Michels (chair of INCITS Data Management (DM32), and the DM32 SQL/PGQ Expert Group)




Agenda

1. What is the SQL Standard?
2. What is SQL/PGQ?
3. Capabilities of SQL/PGQ,

4. Possible future extensions

2 Copyright © 2024, Oracle and/or its affiliates




What is the SQL Standard? (SELECT ... FROM ... WHERE...)

Well-known de jure database language standard

* |SO standard (ISO/IEC 9075) developed collaboratively by a number of national bodies (USA, UK, Germany,
Japan, etc.)

* National body standards identical to the ISO standard
* 11 parts:

* Framework, Foundation, Schemata (specify “core” functionality; e.g., DDL, DML, etc.)
* CLI, PSM, OLB, JRT, MED, XML, MDA, PGQ

Mature standard, but still evolving

* |nitial version published in 1986 (US) and 1987 (ISO)

* Several revisions since: 1989/92/99, 2003/08/11/16

* Most recent: SQL:2023
Many implementations — with varying degrees of conformance
Large number of applications

3 Copyright © 2024, Oracle and/or its affiliates




Why integrate with SQL?

Data is already stored in relational databases
* Tables model vertices and edges
* Table columns model properties
SQL has powerful (analytical) functionality
* No need to duplicate functionality in a stand-alone property graph database
* E.g., GROUP BY, row pattern matching, window/analytics functions, etc.
* E.g., security model, transactions, manageability, metadata
Easily join graph data with relational (non-graph) data
* No need to ship data from graph system to relational system or vice versa
Graph definition in SQL dictionary (along with SQL schema definition)

4 Copyright © 2024, Oracle and/or its affiliates




What is SQL/PGQ?

Part of ANSI/ISO SQL standard: ISO/IEC 9075-16 (SQL/PGQ — Property Graph Queries)
Property graph - first class database object
* View-like object
* Created using DDL statements based on existing relational tables
* Tables hold data representing vertices & edges

* No restriction on the number of vertex and edge tables in a given graph
* No restriction on the number of graphs in a database

* Queried using new GRAPH_TABLE operator

Primarily aimed at supporting graph querying over existing schemas
Data Model + DDL

Graph Pattern Matching + SQL query syntax
Integrates well with the remainder of SQL

5 Copyright © 2024, Oracle and/or its affiliates




Graph Application Example: Anti-Money Laundering (AML)

Anti-Money Laundering (AML) o e @I

* A big application in financial domain Combating fraud and
money laundering with

* Detect and report suspicious activity including offenses graph analytics PEyMEMESSOUNCe - |
to money laundering

wowstaoms: The Latest
st of the money laundering fight Merchant Sottloments problem. Hore's how to fix that.

z Dirty money and money laundering have been around since the L .
[ ] existence of On a global level, as much as $2 Pa yTh I n k The grq ph Is the futu re Of
-l

trillion is washed annually, estimates the United Nations. Today's

criminals are sophisticated, using everadapting tactis o | [P@ money |qundering fight

bypass traditional anti-fraud solutions. Even in cases where
enterprises do have enough data to reveal illicit activity, more

* Money laundering activities are spread across many ¢ [n L] =|

lam EDT

transactions between multiple entities

the most of analyzing their colossal amounts of data in real time for anti-

Graph is very useful in building AML solutions

hdering efforts

* Need to gather up actives that look suspicious PUNKRIOUS oo 0 conacs —y
i nd ivi d u a ”y a n d a na Iyze i nte r_co n n ecti On S a m O n g In this article, we'll focus on anti-money laundering procedures and explore a specific case with a graph

approach.
those
STRENGTHENING AML CONTROLS WITH NETWORK

ANALYSIS

Money laundering is the act of converting proceeds from criminal activities into legal assets, concealing
their true origins. Governments have been steadily strengthening AML rules to prevent these activities.
Banking institutions are now required to follow strict AML policies and to report meney laundering activity

suspicions. Ineffective regulation compliance might be penalized with important financial penalties.

6 Copyright © 2024, Oracle and/or its affiliates




Sample Graph Data — Underlying Tables

accounts
AID
10
customers
20
CID NAME CITY
30
100 Joe San Jose OWNS
40 200 Jane Santa
= Clara oD CID AID  SINCE
300 Jeremy  San 110 100 10 1/1/2019 transfers
Francisco 220 200 20 2/2/2019 TID FROM_ID TO_ID  WHEN AMOUNT
400 Jessica gﬁd""o"d 330 300 30  3/3/2019 102001 10 20 1/1/2020 5000
ores
103001 10 30 1/1/2020 15000
500 Fletcher San Jose 440 400 40 4/4/2019
104001 10 40 1/1/2020 20000
550 500 50 5/5/2019
105001 10 50 1/1/2020 25000
510 500 10 1/1/2019
304001 30 40 1/2/2020 11000
305001 30 50 1/2/2020 4000
403001 40 30 1/3/2020 15000
305002 30 50 1/3/2020 14000

7 Copyright © 2024, Oracle and/or its affiliates




Property Graph Definition (1)

Defaults apply for label
and all properties.

CREATE PROPERTY GRAPH aml
VERTEX TABLES ( accounts AS account

[Explicitlabel and properties | , customers
options for customer LABEL customer PROPERTIES ( cid, name,
EDGE TABLES ( owns SOURCE customers DESTINATION account
PROPERTIES ( since )
, transfers
SOURCE KEY ( from_id ) REFERENCES account

DESTINATION KEY (to id) REFERENCES account

LABEL transfers PROPERTIES ( when, amount)

Columns when and amount are
exposed as properties. Columns tid,
from_id, and to_id are not.

city ))

( aid
( aid
)

8 Copyright © 2024, Oracle and/or its affiliates

)

)

Vertex and edge labels

4 N

customer

: account
owns O

K transfers /




Property Graph Definition (2)

Existing tables (or views): customers, accounts, owns, transfers
User can specify options for
* Labels (1 or more per vertex/edge table)
* Properties (0 or more per label), can rename properties
* Keys (single or multi-column key)
If not specified, defaults apply:
* Single label defaults to table name/alias
 All (non-hidden) columns are exposed as properties for a given label
 Keys are inferred from primary/foreign keys of underlying tables.
* PK-FK determines connection between vertices via edges (e.g., customer —[owns]-> account)
User can mix and match within a single PG definition:
* Explicit options, and
* Implicit defaults

9 Copyright © 2024, Oracle and/or its affiliates




Sample Graph Data

C100

owns owns

owns

transfers

A 1 O $25000 A 5 O

transfers
$5000 transfers
$15000

transfers
$20000

transfers

$14000 C 3 O O

owns

transfers
$4000

C200 [—=— A20

transfers
$11000

AdO|  _—

$15000

owns

C400

10 Copyright © 2024, Oracle and/or its affiliates




_r

Retrieve the info of all customers who got more
than $10,000 from customer 100.

Querying PGs — Example 1

New operator applied to graph named
aml, returns table

SELECT gt.cidWVgt.name, gt.city, gt.amount
FROM GRAPH_TABLE ( aml
MATCH
( c1 IS customer ) -[ IS owns ]->
( IS account ) -[ t1 IS transfers ]->
( IS account ) <-[ IS owns ]- ( c2 IS customer )
WHERE cl.cid = 100
AND t1.amount > 10000
COLUMNS ( c2.cid

Edge pattern
enclosed in -[]->

» C2. nz?me COLUMNS defines the shape of the \e/r?gg)s(e%aitﬁ]ez)n
, C2.city output table. Properties projected
, tl.amount ) out of the MATCH.

) gt

11 Copyright © 2024, Oracle and/or its affiliates




Example 1 - Output

CID NAME CITY AMOUNT
300 Jeremy San Francisco 15000
400 Jessica  Redwood Shores 20000
500 Fletcher San Jose 25000

12 Copyright © 2024, Oracle and/or its affiliates



SQL/PGQ Pattern Matching Cheat Sheet — Vertex Pattern (1)

Matches a single vertex
Enclosed in parentheses ()
e ASCII art for a circle drawn around a vertex
Three (optional) components:
* Vertex graph pattern variable
 Label expression (introduced by the keyword IS)
* (local) WHERE clause to specify a condition (an SQL predicate)

13 Copyright © 2024, Oracle and/or its affiliates




SQL/PGQ Pattern Matching Cheat Sheet — Vertex Pattern (2)

()

* None of the three optional components is present

* Empty vertex pattern matches any vertex without restrictions

* Vertex pattern has only a vertex graph pattern variable: C

* Pattern matches any vertex, which can then later be referred to by
the pattern variable

(IS customer)

e Vertex pattern has only a label: customer

e Pattern matches only those vertices that have the label customer
(C IS customer)

* Vertex pattern has a vertex graph pattern variable: C
* Vertex pattern has a label: customer

* Pattern matches any vertex that has a label customer, can then
later be referred to by the pattern variable C

14 Copyright © 2024, Oracle and/or its affiliates

(V WHERE V.id = 12345)

* Vertex pattern has a vertex graph pattern variable: V

Vertex pattern has a WHERE clause that specifies a condition

Pattern matches any vertex whose property id equals 12345

(C IS customer WHERE C.first_name = 'Joe')

Vertex pattern has a vertex graph pattern variable: C
Vertex pattern has a label: customer

Vertex pattern has a WHERE clause that specifies a condition

Pattern matches any vertex that has a label customer and whose

property first_name equals ‘Joe’




SQL/PGQ Pattern Matching Cheat Sheet — Edge Pattern (1)

Matches a single edge
Enclosed in arrow tokens
Three (optional) components (same as in vertex pattern):
* Edge graph pattern variable
* Label expression (introduced by the keyword IS)
* (local) WHERE clause to specify a condition (an SQL predicate)
Two (x3) variants:

directed pointing to the directed pointing to Any edge (pointing

right the left right or left)

Brackets to enclose -[1-> <-[1- -[1-
optional components

No filler > <- -

15 Copyright © 2024, Oracle and/or its affiliates




SQL/PGQ Pattern Matching Cheat Sheet — Edge Pattern (2)

->

* Edge pattern that matches any (outgoing) edge

* None of the three optional components can be specified
-[1->

* Same as above but any of the four optional components could be
specified between the brackets

-[E]->
* Matches any (outgoing) edge and specifies pattern variable E

* One can refer to this edge later in the query using the pattern
variable E

-[ IS knows ]->

* Matches any (outgoing) edge that has a label knows

16 Copyright © 2024, Oracle and/or its affiliates

-[EIS owns ]->

* Matches any (outgoing) edge that has a label owns, can then later
be referred to by the pattern variable E

-[E WHERE E.since = '1999']->
* Matches any (outgoing) edge whose property since equals ‘1999’.

-[E IS knows WHERE E.since = '1999']->

* Matches any (outgoing) edge that has a label knows and whose
property since equals ‘1999’".




Variable-length Path Patterns

Quantification is used to express variability/repetition in the pattern.
Uses postfix quantifiers:

° ? — 0 or 1 iterations

*{n} — exactly n iterations (n > 0)

*{n,m} — between n and m (inclusive) iterations (0 <=n <=m, 0< m)

*{,m} — between 0 and m (inclusive) iterations (m > 0)
Additionally:

*{n,} — n or more iterations (n >=0)

o ¥

— 0 or more iterations
° + — 1 or more iterations

Dangerous, if graph contains cycles
* Query has the potential to not terminate and/or produce infinite results
* Need to put in safeguards to ensure termination

17 Copyright © 2024, Oracle and/or its affiliates




Querying PGs — Example 1a

18

intermediary.

Retrieve the info of all customers who got
more than $10,000 from customer 100 via 1

1

SELECT gt.cid, gt.name, gt.city, gt.amountl, gt.amount2
FROM GRAPH_TABLE ( aml

MATCH

( c1 IS customer ) -[ IS owns ]->
( IS account ) -[ t1 IS transfers ]->
( IS account ) -[ t2 IS transfers ]->
( IS account ) <-[ IS owns ]- ( c2 IS customer )

WHERE c1.cid
AND tl1.amount > 10000
AND t2.amount > 10000

COLUMNS (

) gt

J

J

J

c2.
c2

c2.
t1

t2

= 100

cid

.Nname

city

.amount AS amountl
.amount AS amount2 )

Copyright © 2024, Oracle and/or its affiliates

Output
CID NAME CITY AMOUNT1 AMOUNT2
400 Jessica Redwood Shores 15000 11000
300 Jeremy  San Francisco 20000 15000
500 Fletcher San Jose 15000 14000




\
Querying PGS —_ Examp|e 2 Retrieve the info of all unique customers who are

connected to fraudster 500 within four hops via
money transfers (incoming, outgoing, or both).

SELECT DISTINCT gt.cid, gt.name, gt.city
FROM GRAPH_TABLE ( aml

MATCH Repeating edge
( ¢c1 IS customer ) -[ IS owns ]-> (1to 4 times)
( IS account ) -[ IS transfers ]- {1,4}

( IS account ) <-[ IS owns ]- ( c2 IS customer )
WHERE cl.cid = 500
COLUMNS ( c2.cid
, C2.name
, c2.city )

) gt

19 Copyright © 2024, Oracle and/or its affiliates




Querying PGs — Example 2a e h

Retrieve the info of all customers who are
connected to fraudster 500 within four hops via
money transfers (incoming, outgoing, or both),
and their closest distance from 500.

J

SELECT gt.cid, gt.name, gt.city, MIN(gt.hops)
FROM GRAPH_TABLE ( aml
MATCH
( c1 IS customer ) -[ IS owns ]->
( IS account ) -[ t1 IS transfers ]- {1,4}
( IS account ) <-[ IS owns ]- ( c2 IS customer )

WHERE cl.cid = 500 :
. Aqggregate function
COLUMNS ( c2.cid m%%e%XDUJMNS
, C2.name — Clause.
, C2.city

, COUNT (tl1.when) AS hops )

) gt
GROUP BY gt.cid, gt.name, gt.city

20 Copyright © 2024, Oracle and/or its affiliates




Find the (shortest) loops where money flows
back to the original sender (not necessarily

Querylng PGs — Example 3 the same account).

SELECT DISTINCT gt.cid, gt.name, gt.city, gt.min_hops
FROM GRAPH_TABLE ( aml

MATCH
( ¢1 IS customer ) -[ IS owns ]-> r
( IS account ) -[ tl1l IS transfers ]->* ——— Kleene * means 0 to
( IS account ) <-[ IS owns ]- ( c1 ) Lunboundediterations ]
KEEP ANY SHORTEST
COLUMNS ( cl.cid
, cl.name SHOFEJTES(]' rgakeser
, clcity o

, COUNT(tl1.when) AS min_hops)
) AS gt

21 Copyright © 2024, Oracle and/or its affiliates



SQL/PGQ Pattern Matching Cheat Sheet — KEEP clause

Path selector Path restrictor

* ALL (default) * WALK (default)  — no filtering taking place

* ANY * TRAIL — filters paths with repeated edges

* ANYk  ACYCLIC — filters paths with repeated vertices
 ALL SHORTEST e SIMPLE — filters paths with repeated vertices

« ANY SHORTEST unless repeated vertices are the first

and last in path
*  SHORTEST k

Any combination of path selector plus path restrictor is permitted.*
For example:

 KEEP ANY TRAIL

e KEEP SHORTEST 10 ACYCLIC PATHS

Optionally suffixed with PATH/PATHS keyword.

* With necessary safeguards to guarantee termination in case of unbounded quantifiers.
22 Copyright © 2024, Oracle and/or its affiliates




SQL/PGQ Number of Rows Per Match

ONE ROW PER VERTEX and ONE ROW PER STEP allow for unnesting/normalizing of path data.

Graph Table Rows Clause

e ONE ROW PER MATCH — the default
produces one row per match
e ONE ROW PER VERTEX (v) — declares a single iterator vertex variable

produces one row per vertex

* ONE ROW PER STEP (v1, e, v2) — declares an iterator vertex variable, an iterator edge variable, and
another iterator vertex variable
produces one row per step (= a vertex-edge-vertex triple)

23 Copyright © 2024, Oracle and/or its affiliates




Querying PGs — Example 4 /rFind all simple paths from fraudster 500 back to itself.

24

Output all account numbers and transaction amounts
along paths.

SELECT *
FROM GRAPH _TABLE ( aml

MATCH

( ¢1 IS customer ) -[ IS owns ]->
( IS account ) -[ t1 IS transfers ]->+ SIMPLE means no re :
peated vertices allowed
KEEP A(LL]:gI?’l(I;IC_céurI;ETI)-IS<-[ IS owns ]- ( cl) other than first+last (c1 in this case) ]
————— \

—

WHERE cl.cid = 500 ———
WHERE clause after KEEP clause specifies a postfilter*

ONE ROW PER STEP ( vl, e, v2 )
COLUMNS ( MATCHNUM() AS matchnum \
, ELEMENT _NUMBER(e) AS elemnum _
n ONE ROW PER STEP outputs one row for each step in a ]

, vl.aid AS from acct ) ;

- ath (a step is a vertex-edge-vertex triple
, e.amount P (astep & ple)
J

v2.aid AS to_acct)

)
WHERE amount IS NOT NULL

ORDER BY matchnum, elemnum

* For this query the result is the same no matter if the filter is a prefilter or a postfilter, but that is not generally the case.

Copyright © 2024, Oracle and/or its affiliates




Example 4 - Output

MATCHNUM ELEMNUM FROM_ACCT AMOUNT TO_ACCT

|1 4 10 15000 30

path #1 has 2 transfers edges —
|1 6 30 4000 50
2 4 10 15000 30

path #2 has 2 transfers edges —
|2 6 30 14000 50
IE! 4 10 20000 40
path #3 has 3 transfers edges — 3 6 40 15000 30
|3 8 30 4000 50
|4 4 10 2000 40
path #4 has 3 transfers edges — 4 6 40 15000 30
- 4 8 30 14000 50
path #5 has 1 transfers edge { 5 4 10 25000 50

25 Copyright © 2024, Oracle and/or its affiliates




Possible future extensions to SQL/PGQ,

There are ideas and some initial write-ups for standardizing additional features.

Additional path selectors
* For example: cheapest, minimal, maximal path
Conditions that cross iterations of a quantifier

* LDBC Financial Benchmark example: find a path of transactions where the timestamp keeps increasing for each
two consecutive edges

Optional pattern matching
* Like left outer join
Exporting vertices, edges, paths, or entire matches to JSON

* Example use case: graph visualization based on graph elements returned from a query

26 Copyright © 2024, Oracle and/or its affiliates




Thank you

27

Copyright © 2024, Oracle and/or its affiliates

e
Standards Sectors About ISO News Taking part Store

Free learning opportunity: Join us online in September! —

INTERNATIONAL ISO/IEC 9075~
STANDARD 16:2023

202308

Information technology — Database
languages SQL — Part 16: Property
Graph Queries (SQL/PGQ)

Read sample

General information

Status : Published
Publication date : 2023-06

ISO/IEC 9075-16:2023

Information technology — Database languages
SQL

Part 16: Property Graph Queries (SQL/PGQ)

Published (Edition 1, 2023)

Stage : International Standard published [60.60]

Edition : 1
Number of pages : 269

Technical Committee : ISO/IEC JTC 1/SC 32

ICS : 35.060

EY RSS updates


https://www.iso.org/standard/79473.html

	All slides
	Slide 1: The SQL/PGQ Standard: SQL support for property graphs
	Slide 2: Agenda
	Slide 3: What is the SQL Standard? (SELECT … FROM … WHERE…)
	Slide 4: Why integrate with SQL?
	Slide 5: What is SQL/PGQ?
	Slide 6: Graph Application Example: Anti-Money Laundering (AML)
	Slide 7: Sample Graph Data – Underlying Tables
	Slide 8: Property Graph Definition (1)
	Slide 9: Property Graph Definition (2)
	Slide 10: Sample Graph Data
	Slide 11: Querying PGs – Example 1
	Slide 12: Example 1 - Output
	Slide 13: SQL/PGQ Pattern Matching Cheat Sheet – Vertex Pattern (1)
	Slide 14: SQL/PGQ Pattern Matching Cheat Sheet – Vertex Pattern (2)
	Slide 15: SQL/PGQ Pattern Matching Cheat Sheet – Edge Pattern (1)
	Slide 16: SQL/PGQ Pattern Matching Cheat Sheet – Edge Pattern (2)
	Slide 17: Variable-length Path Patterns
	Slide 18: Querying PGs – Example 1a
	Slide 19: Querying PGs – Example 2
	Slide 20: Querying PGs – Example 2a
	Slide 21: Querying PGs – Example 3
	Slide 22: SQL/PGQ Pattern Matching Cheat Sheet – KEEP clause
	Slide 23: SQL/PGQ Number of Rows Per Match
	Slide 24: Querying PGs – Example 4
	Slide 25: Example 4 - Output
	Slide 26: Possible future extensions to SQL/PGQ
	Slide 27: Thank you


