From OpenRank to OpenPerf — Enhancing Open Source Ecosystem Insights with Graph-Based Approaches

Wei Wang

East China Normal University

X-lab Community

July 2024

OpenGalaxy 2019

OpenGalaxy is generated by collaboration network of all active GitHub repos in 2019. This graph contains 171,141 nodes and 2,811,489 edges. The generate method can be found in here [1] and the data is from GHArchive [2].

OpenGalaxy 是通过 GitHub 2019 年全域所有活跃项目的协作网络 生成的。本图共包含 171,141 个节点和 2,811,489 条边。具体生成 方法请参见这里 [1],数据来自于 GHArchive [2]。

~ Area/领域	Top Repos/顶级项目	Count/项目数量
ts & frontend	VSCode, TypeScript, react, jest	23,254
cloud native	kubernetes, go, helm, ansible	15,787
Al libs	pandas, numpy, conda, openjournals	14,971
tools	rust, nextcloud, godotengine	13,361
PHP	symfony, laravel, wordpress, magento	8,158
Microsoft	azure-docs, AspNetCore, WSL	6,276
system	homebrew, systemd	6,193
biotech	rstudio, bioconda	6,102
blockchain	bitcoin, ethereum, ipfs	5,141

[1] http://blog.frankzhao.cn/open_rank_and_open_galaxy/

[2] http://www.gharchive.org/

OpenGalaxy 3D

Xingran Zhang, Xiaoya Xia, Shengyu Zhao, Wei Wang, OpenGalaxy: An interactive exploration platform for a visualized GitHub Full Domain collaboration network, ICPC, 2024.

Motivation: GitHub Platform and Open Data

GitHub

- The world's largest code hosting platform
- Acquired by Microsoft in May 2019 for \$7.5 billion

Not Just Code

- Issue Management
- Distributed Collaboration
- Continuous Integration
- Project Management
- Security Risk Management

Open data

- GitHub Restful API
- GitHub Event log

Method: Data-Driven Developer Behavioral Science

Activity data in open source software development and ecosystem evolution is a very broad concept. Any data generated in the process of software development, maintenance, operation, as well as ecosystem governance, evolution, etc., can be called open source software activity data, including but not limited to:

- Git/GitHub Log Event
- Source Code
- Documentation
- Configuration Files
- Changes

- Development Process Developers
- Package Hosting Platforms
- Social Data
- Software Ecosystem Network

OpenDigger OpenDigger project

- GitHub action log entries: <u>5.8 billion</u>
- Artifact repository data from NPM/PyPI, etc:
 <u>6.2 million</u> entries
- CVE security vulnerability data: <u>160,000</u> <u>entries</u>
- StackOverflow Q&A posts: <u>25 million</u>
- Labeled data, including 413 GitHub orgs, covering <u>89,427 repositories</u>

Research chanllenges: <u>Identification</u>, <u>Recognition</u>, <u>Accounting</u>, and <u>Rewarding</u> <u>of Open Source Contributions</u>

The Essence of Open Source Contribution: A Graph Perspectives

From the Perspective of Digital Economics: Not only is the Internet a network, but all economic phenomena are networks

OpenRank Developer Contribution Evaluation

OpenRank Leaderboard: Motivating Open Source Collaborations Through Social Network Evaluation in Alibaba

Shengyu Zhao¹, Xiaoya Xia²⁺ Brian Fitzgerald⁵, Xiaozhou Li⁴, Valentina Lenarduzzi⁴, Davide Taibi⁴ Rong Wang⁵, Wei Wang²⁺, Chunqi Tian¹ ¹'Ongji University, China – ²East China Normal University, China frank_sxy@ongji.edu.cnxiaoya@stu.em.edu.em.bf@leroier xiaozhou.li@oulu.fiyalertina.lenard/suz@oulu.fi;davide.taibi@oulu.fi; tunan.wr@alibaba.inc.com,wwang@dase.ecu.uedu.en.tiand.mig@tongji.edu.en

ABSTRACT

Open source has revolutionized how software development is carried out, with a growing number of individuals and organizations contributing to open source projects. As the importance of open source continues to grow, companies also expect to grow thriving and sustainable open source communities with continued contributions and better collaborations. In this study, we applied the contribution leaderboard to seven open source projects initiated by Alibaba. We conducted a case study to investigate the perceptions and facts regarding how to motivate collaboration through gamification. Specifically, we employed a social network algorithm, OpenRank, to evaluate and steer developers' contributions. We validated the effectiveness of OpenRank by comparing it with other evaluation metrics and surveying developers. Through semi-structured interviews and project metric analysis, we found that the OpenRank Leaderboard can promote transparent communication environments, a better community atmosphere, and improved collaboration behavior.

1 INTRODUCTION The increasing popularity of open source projects has led to the development of an cosystem in which individuals and organizations can collaborate to create high-quality software that is available to all [1]. Unlike traditional software development relievo nuclear source that requires open source development relievo nuclearizations that requires extensive asynchronous communication and distributed collaboration [2]. With the rise of companies as significant users and even major players in the open source software cosystem, they are inreasingly taking the initiative to create, open source, and maintain

their own projects as a way to contribute to the community and

build technical influence in the industry [3]. Naturally, companies

ties, receiving contributions from non-employees rather than just

want their open source projects to flourish as thriving commun

from their own employees. This requires attracting new developers to projects in the first place (magnetism) [4, 5] and subsequently taining these developers over time (stickines s) [6-8]. To achie **Research Questions** RQ2 RQ3 RQ1 **OR Effectiveness** Impact on Projs **Devs Perception** RDD over Semi-structured Comparison CHAOSS metrics Interview Survey **ICSE24** PORTUGAL LICBON | APRIL 14-7

The **OpenRank algorithm** is an evaluative method that generalizes the PageRank algorithm to accommodate directed, weighted, heterogeneous networks with initial values that are not necessarily strongly connected. When applied to the assessment of contributions in the open-source context.

- Significant positive correlation with traditional metrics.
 Developers endorse the OpenRank results.
- Noticeable impact on developers already in the projects, particularly in issue discussions, PRs submission and emojis.
- Observation of desirable developers' behavior impact and improvement of community collaboration.

The Applications of OpenRank

From OpenRank to OpenPerf

OpenPerf enhances the sustainability and growth of the OSS ecosystem by providing tools for measuring and evaluating project metrics, enabling data mining for research, offering methodologies for ranking projects, and assessing contribution levels.

OpenPerf Suite Architecture

Table	e 1:	Benc	hmar	king	Tasks
-------	------	------	------	------	-------

Benchmarking Task	Data Type	Problem Type	Scene	Research Field
Behavior Data Completion and Prediction[11]	Time Series	Regression	Enterprise Governance	Data Flow
OSS Bot Identification and Classification[6]	Time Series	Classification	Software Development	Data Flow
Community Sentiment Classification[54, 62]	Text Data	Classification	Community Operations	NLP
Risk Prediction[32]	Time Series	Regression	Ecosystem Strategy	Complex Networks
Software Supply Chain Risk Prediction[32] Project Influence Ranking[68]	Time Series Graph & Network	Regression Ranking	Ecosystem Strategy Community Operations	Complex Networks Complex Networks
Software Supply Chain Risk Prediction[32] Project Influence Ranking[68] Archived Project Prediction[60]	Time Series Graph & Network Time Series	Regression Ranking Regression	Ecosystem Strategy Community Operations Enterprise Governance	Complex Networks Complex Networks Web Mining
Software Supply Chain Risk Prediction[32] Project Influence Ranking[68] Archived Project Prediction[60] Network Metric Prediction[59]	Time Series Graph & Network Time Series Graph & Network	Regression Ranking Regression Regression	Ecosystem Strategy Community Operations Enterprise Governance Enterprise Governance	Complex Networks Complex Networks Web Mining Data Flow
Software Supply Chain Risk Prediction[32] Project Influence Ranking[68] Archived Project Prediction[60] Network Metric Prediction[59] Community Anomalous Detection[10]	Time Series Graph & Network Time Series Graph & Network Time Series	Regression Ranking Regression Regression Anomaly Detection	Ecosystem Strategy Community Operations Enterprise Governance Enterprise Governance Enterprise Governance	Complex Networks Complex Networks Web Mining Data Flow Complex Networks

Influence Ranking Comparison Results

Repository	Degree Centrality	PageRank	OpenRan
home-assistant/core	0.015660	0.0035	2393.86
NixOS/nixpkgs	0.008743	0.0008	2207.5
microsoft/vscode	0.015247	0.003	1960.39
flutter/flutter	0.012138	0.002	1460.34
pytorch/pytorch	0.009624	0.0012	1421.18
azure-docs	0.239616	0.08	1216.01
dotnet/runtime	0.004141	0.0006	1181.12
winget-pkgs	0.061954	0.0075	1106.3
godotengine/godot	0.203330	0.045	1105.51
odoo/odoo	0.175534	0.043	907.97

OSGraph

OSGraph (Open Source Graph) is an open-source graph-based analytics tool that leverages the comprehensive graph of GitHub open-source data to provide insights into developer behavior and project community ecosystems. It offers developers, project owners, DevRel advocate, and community operators a clear and intuitive view of open-source data, helping you and your project to create a personalized open-source business card, find compatible development partners, and unearth deep community value.

Wenrui Huang, Xiaoya Xia, Shengyu Zhao, Wei Wang, OSGraph: A Data Visualization Insight Platform for Open Source Community, DASFFA, 2024

OpenPerf × **OSGraph**

Scenario / Task	Graph Data Mining Tasks	Graph Neural Network Analysis Tasks	Network Science Tasks
Project Contribution Graph	Attribute Analysis	Representation	Properties Analysis
Project Ecosystem Graph	 Graph Matching Graph Retrieval Graph Clustering Graph Classification Frequent Subgraph Mining Graph Pattern Link Prediction Anomaly Detection 	Learning Node Classification Graph Classification Link Prediction Graph Matching AutoML Dynamic Graphs Heterogeneous Graphs 	 Properties Analysis Models Analysis Evolution Degree Correlation Robustness Analysis Communities Analysis Propagation
Project Community Graph			
Developer Activity Graph			
Open-source Partner Graph			
Open-source Interest Graph			

Connected World = OpenPerf × OSGraph × ...

References

- Shengyu Zhao, Xiaoya Xia, Brian Fitzgerald, et al., <u>Motivating Open Source Collaborations Through Social Network</u> <u>Evaluation: A Gamification Practice from Alibaba</u>, *International Conference on Software Engineering (ICSE)*, 2024.
- Liang Chen, Wei Wang, Yun Yang, <u>Temporal Autoregressive Matrix Factorization for High-dimensional Time Series</u> prediction of OSS, IEEE Transactions on Neural Networks and Learning Systems, 2024.
- Yenan Tang, Shengyu Zhao, Xiaoya Xia, et al., <u>HyperCRX: A Browser Extension for Insights into GitHub Projects and</u> <u>Developers</u>, *International Conference on Program Comprehension* (ICIP), 2024.
- 4. Xinran Zhang, Shengyu Zhao, Yenan Tang, et al., <u>OpenGalaxy: An Interactive Exploration Platform for a Visualized</u> <u>GitHub Full Domain Collaboration Network</u>, *International Conference on Program Comprehension (ICIP)*, 2024.
- Wenrui Huang, Xiaoya Xia, Aoying Zhou, et al., <u>OSGraph: A Data Visualization Insight Platform for Open Source</u> <u>Community</u>, *International Conference on Database Systems for Advanced Applications (DASFAA)*, 2024.
- 6. Xiaoya Xia, Wei Wang, Shengyu Zhao, Understanding the Archived Projects on GitHub, IEEE SANER, 2023.
- 7. OpenDigger: https://github.com/X-lab2017/open-digger
- 8. OpenGalaxy: <u>https://github.com/X-lab2017/open-galaxy</u>
- 9. OpenPerf: https://arxiv.org/abs/2311.15212

10.OSGraph: <u>https://github.com/TuGraph-family/OSGraph</u>

