
Unified Graph Query Plan
Representation and Optimization

Lei Zou

Peking University

Data Management Lab, Wangxuan Institute of Computer Technology

< 2 >

To Collaborators

• Prof. Tamer Ozsu, University of Waterloo

• Prof. Jeffrey Xu Yu, The Chinese University of Hong Kong

• Yue Pang, Peking University

• Linglin Yang, Peking University

• Dr. Xiangyang Gou, the University of New South Wales

< 3 >

Outline

• Graph Databases Overview

• Unified Graph Query Plan Representation

• Graph Query Optimization: Cardinality Estimation

• Conclusions

Graph Databases Overview

< 4 >

Graph databases: a type of
NoSQL database
Focuses on storing and
querying the relationships
between entities using the
graph abstraction

Distinction from relational
databases

• (Semi-)Schema-less: do not
have data schemas a priori,
flexible

• Adjacency storage: materializes
the relationships between
entities, accessible without joins

• Deep queries: subgraph queries
with complex join patterns, path
queries with unlimited recursion

< 5 >

Graph Data & Query Model

SELECT ?person WHERE {
?david <type> <Person> .
?david <name> “David” .
?david <knows>+ ?person .

}

SPARQL

Person

Name David
Age 45

PersonPerson

Post

follows

follows

follows

creates likes

MATCH (:Person WHERE
name=‘David’)-[:knows*1..]-
>(person)
RETURN person

GQL

Property
Graph

A

BD

P

follows

follows

follows

creates likes

name

Person

Post

typetype

type

type

David

RDF

14

age

Differences
• Property graphs represents properties by key-value tables associated with vertices & edges
• RDF represents properties by creating property vertices and linking the entity vertices & edges with

them
• Affects the storage layout, query optimization and evaluation

< 6 >

Graph Data & Query Model

SELECT ?person WHERE {
?david <type> <Person> .
?david <name> “David” .
?david <knows>+ ?person .

}

SPARQL

Person

Name David
Age 45

PersonPerson

Post

follows

follows

follows

creates likes

MATCH (:Person WHERE
name=‘David’)-[:knows*1..]-
>(person)
RETURN person

GQL

Property
Graph

A

BD

P

follows

follows

follows

creates likes

name

Person

Post

typetype

type

type

David

RDF

14

age

Similarities
• The core query constructs are the same:

• Conjunctive graph query, i.e., subgraph matching
• Regular path query

< 7 >

Graph Data & Query Model

Conjunctive graph query

Given a query graph, find subgraphs in the
data graph that are isomorphic to it

Regular path query

Given a regular expression on the set of
edge labels, find vertices pairs in the data
graph connected by paths with edge label
sequences that can be recognized by the
regular expression

S T

P

FOLLOWS*

AUTHORS AUTHORS

S T

P
AUTHORS AUTHORS

S TFOLLOWS*

Conjunctive regular path query (CRPQ)

< 8 >

Beyond conjunctive graph & regular path queries

SELECT DISTINCT ?replyAuthorId WHERE {
?message :id “1”^^xsd:long .
?message hasCreator ?messageCreator.
?repliedComment :replyOf ?message .
?repliedComment :hasCreator ?replyAuthor.
?replyAuthor :id ?replyAuthorId .
OPTIONAL

{ ?replyAuthor :directKnows/ :directKnows? ?messa
geCreator. }
}

Graph Data & Query Model

• Besides conjunctive regular path query (CRPQ), existing
graph query languages such as SPARQL, Cypher and
GQL also include other graph query constructs,
OPTIONAL, AGGREGATION, UNION and top-k.

SPARQL
MATCH (message {id: 1})
MATCH (replyAuthor)<-[:hasCreator]-
(repliedComment)-[:replyOf]->(message)-
[:hasCreator]->(messageCreator)
OPTIONAL MATCH (replyAuthor)-
[:directKnows*1..2]->(messageCreator)
RETURN DISTINCT replyAuthor.id AS replyAuthorId

Cypher

*1..2

< 9 >

2. Graph Query Evaluation: Graph Algebra

[14]Pacaci A, Bonifati A, Özsu M T. Evaluating complex queries on streaming graphs[C]//2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022: 272-285.

A streaming graph algebra incorporating regular path queries and subgraph queries[14]

Subgraph Matching Operator

Path Navigation Operator

Window Operator

Union Operator

FILTER Operator

Logical Plan

< 10 >

• The overall workflow of graph query planning is not much
different from planning in relational databases
• Plan Enumerator: Enumerates semantically equivalent

query plans
• Cardinality & Cost Estimator: estimates the cost of each

query plan so that the executor can choose the expected
cheapest plan

• However, there are the following differences in the actual
planning procedure:
• Plan Representation: due to the different query syntax &

semantics
• Cost & cardinality estimation schemes: due to the

different storage scheme and physical operators

Query

Plan Enumerator

Plan 1 Plan 2 Plan k...

Cardinality & Cost
Estimator

Cost 1 Cost 2 Cost k...

Lowest-cost
plan

Executor

Results

2. Graph Query Evaluation: Workflow

< 11 >

2. Graph Query Evaluation: Workflow

Conjunctive graph
query Regular path query

Conjunctive regular path query

Other Constructs: OPTIONAL, UNION,
AGGREGATION, FILTER, TOP-K ……

A Uniform Graph Query Engine

• Representing graph query plan in a uniform manner.

< 12 >

Subgraph Query (Conjunctive Graph Query) : Given a query 𝑄 and a data graph 𝐺, 𝑄 is subgraph
isomorphism to 𝐺, if and only if there exists an injective function 𝑓: V Q → 𝑉(𝐺), such that
1. ∀ 𝑢 ∈ 𝑉 𝑄 , 𝑓 𝑢 ∈ 𝑉 𝐺 , 𝐿! 𝑢 = 𝐿! 𝑓 𝑢 , where 𝑉 𝑄 and 𝑉 𝐺 denotes all vertices in 𝑄 and 𝐺,

respectively; and 𝐿! 3 denotes the corresponding vertex label.
2. ∀𝑢"𝑢# ∈ 𝐸 𝑄 , 𝑓(𝑢")𝑓(𝑢#) ∈ 𝐸 𝐺 , 𝐿$ 𝑢"𝑢# = 𝐿$ 𝑓 𝑢" 𝑓(𝑢#)

A

B C

A

B C

A

1

2 3

1

2

4

𝑄 𝐺

2. Graph Query Evaluation: Subgraph Query

< 13 >

2. Graph Query Evaluation: Subgraph Query

A

B C

𝑢!

𝑢" 𝑢#

A

B C

A

𝑣!

𝑣#𝑣"

𝑣$

Binary join

u1 u2
v1 v2

v4 v2

… …

T1

u1 u3
v1 v2

v4 v2

... …

T2

u2 u3
v2 v3

T3

𝑅 = 𝑇# ⋈ 𝑇$ ⋈ 𝑇%

𝑇# 𝑇$

⋈ 𝑇%

⋈

• Commonly used in relational databases
• Can be more efficient than worst-case-optimal

join on acyclic query graphs

Algorithms for joins:
The core operator in subgraph queries

Query Graph Q Data Graph G

< 14 >

2. Graph Query Evaluation: Subgraph Query

Algorithms for joins:
The core operator in subgraph queries

A

B C

𝑢!

𝑢" 𝑢#

Query Graph

A

B C

A

𝑣!

𝑣#𝑣"

𝑣$

Data Graph

Worst-case optimal join

u2 u3
v2 v3

… …

... …

B Ca
u2 u3

T1

v1

v1 v4 …
…

𝑁(𝑣")

v4

𝑁(𝑣#)

• A class of multi-way
joins

• The number of
intermediate results
are guaranteed to not
exceed the AGM
bound [1]

• Especially efficient on
cyclic query graphs

[1] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.

< 15 >

2. Graph Query Evaluation: Subgraph Query

A hybrid query plan
representing subgraph query

An example hybrid query plan

Image taken from: Linglin Yang, Lei Yang, Yue Pang, and Lei Zou.
2022. GCBO: A Cost-based Optimizer for Graph Databases.
(CIKM '22).

• Most existing works focus on worst-case-optimal-

join-only plans, which extends the intermediate

match by one query vertex at a time

• The query planning problem is reduced to query

vertex ordering

• [2] proposes a hybrid plan space considering both

binary and worst-case-optimal joins

• Benefits both acyclic and cyclic queries

[2] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré, “EmptyHeaded: A Relational
Engine for Graph Processing,” in Proceedings of the 2016 International Conference
on Management of Data.
[3] A. Mhedhbi, and S. Salihoğlu, "Optimizing subgraph queries by combining
binary and worst-case optimal joins,” Proc. VLDB Endow., 2019.

< 16 >

• An RPQ 𝑹 is a regular expression on the edge labels, with the following form:
𝑅 → 𝜖 𝑎 𝑅# / 𝑅$ 𝑅# 𝑅$ 𝑅? 𝑅∗ | 𝑅*

𝑹’s result on the edge-labeled directed graph 𝐺 = (𝑉, 𝐸, Σ, l) is the set of node pairs
with at least a path whose edge label sequence satisfies 𝑹

𝑅 + = {⟨𝑢, 𝑣⟩|∃𝑝 ∈ 𝐺, 𝑝. 𝑠 = 𝑢 ∧ 𝑝. 𝑡 = 𝑣 ∧ 𝑙 𝑝 ∈ 𝐿 𝑅)
Person

PersonPerson

Post

follows

follows

follows

creates likes

“People you follow indirectly”
𝑓𝑜𝑙𝑙𝑜𝑤𝑠% &

= { 𝑣!, 𝑣# , 𝑣!, 𝑣" , 𝑣!, 𝑣! , 𝑣#, 𝑣" , 𝑣#, 𝑣! , 𝑣#, 𝑣# , 𝑣", 𝑣! , 𝑣", 𝑣# , 𝑣", 𝑣" }

“Posts liked by people you follow”
[[𝑓𝑜𝑙𝑙𝑜𝑤𝑠 / 𝑙𝑖𝑘𝑒𝑠]] &= { 𝑣!, 𝑣$ }

𝑣%

𝑣# 𝑣&

𝑣"

2. Graph Query Evaluation: Regular Path Query

< 17 >

[4] André Koschmieder and Ulf Leser. 2012. Regular Path Queries on Large Graphs. In Scientific and Statistical Database Management, Anastasia Ailamaki
and Shawn Bowers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 177–194.
[5] Van-Quyet Nguyen, Quyet-Thang Huynh, and Kyungbaek Kim. 2022. Estimating Searching Cost of Regular Path Queries on Large Graphs by
Exploiting Unit-Subqueries. Journal of Heuristics 28, 2 (April 2022), 149–169.

2. Graph Query Evaluation: Regular Path Query

1. Finite-automaton-based evaluation

a b c

a

Naturally suited for native graph storage

• Converts the regular expression into a finite

automaton
• Conceptually, compute the product automaton

between the regex’s automaton and the data

graph, in which all the reachable node pairs are

the results

• Realistically, the automaton guides the search
on the data graph

• Processes Kleene closures by looping in the

automaton

𝑎/𝑏/𝑐 !

< 18 >

[6] S. Dey, V. Cuevas-Vicenttín, S. Köhler, E. Gribkoff, M. Wang, and B. Ludäscher, “On implementing provenance-aware regular path queries with
relational query engines,” in Proceedings of the Joint EDBT/ICDT 2013 Workshops on - EDBT ’13.
[7] Y. Pang, L. Zou, J. X. Yu, and L. Yang, “Materialized View Selection & View-Based Query Planning for Regular Path Queries,” Proc. ACM Manag. Data
2, 3, Article 152 (June 2024).

Naturally suited for hybrid storage

2. Graph Query Evaluation: Regular Path Query

2. 𝜶-relational-algebra-based evaluation • Converts the regular expression into a relational

algebra tree extended with the 𝜶 (fix-point)
operator

• Executes the tree bottom-up

• 𝛼 (fix-point): self-join the operand result

table until no new rows are produced

• Processes Kleene closures by 𝜶 (fix-point)
operators, no intermediate states like automata

• Can be extended to support multi-query

optimization [7]

𝑎/𝑏/𝑐 !

< 19 >

[8] N. Yakovets, P. Godfrey, and J. Gryz, “Query Planning for Evaluating SPARQL Property Paths,” in Proceedings of the 2016 International Conference on
Management of Data.

2. Graph Query Evaluation: Regular Path Query

3. A hybrid query plan for regular path query [8] • Plan space subsumes those of the previous two

evaluation methods

• Allows multiple automata in a plan with

bidirectional traversal
• Can materialize the result of certain automata to

use as transitions in other automata (e.g., 𝑊"# in

the figure)

• Simulates intermediate result tables in

relational algebra

• Allows “partial loop caching” of Kleene closures –

a point on the spectrum between automaton loop &

fix-point

𝑎/𝑏/𝑐 !

< 20 >

2. Graph Query Evaluation: Conjunctive Regular Path Query

Conjunctive graph
query Regular path query

Conjunctive regular path query

A conjunctive regular path query (CRPQ) is a conjunction of regular path queries (RPQs):

𝑄 𝑥̅ ←@
'(!

)

𝑅*! 𝑦' , 𝑧' ∧ @
'()%!

+

𝑟'(𝑦' , 𝑧')

• 𝑎' ∈ Σ (edge labels)
• 𝑟': RPQs
• 𝑥̅ = {𝑥!, … , 𝑥,} ⊆ {𝑦!, 𝑧!, … , 𝑦+ , 𝑧+} (output variables)
We can view CRPQs as subgraph matching queries whose edges can be specified by either edge labels or RPQs

S T

P

FOLLOWS*

AUTHORS AUTHORS

< 21 >

2. Graph Query Evaluation: Conjunctive Regular Path Query

• Considers binary-joining the triple patterns to

get the CRPQ result

• The CRPQ query planning problem is thus

reduced to a join ordering problem

• Uses the ALP procedure as in the SPARQL 1.1

specification to evaluate RPQs, which is

basically BFS guided by finite automata (i.e.,

fixed RPQ plans)

• The WCOJ nodes in the figure are used to

simulate the automata-guided traversal

Binary-join-based evaluation [9]

a b

BJ c

BJ b

BJ

BJ

FP

WCOJ

WCOJ c

a b

Query:
[9] J. Aimonier-Davat, H. Skaf-Molli, P. Molli, M.-H. Dang, and B. Nédelec, “Join
Ordering of SPARQL Property Path Queries,” in The Semantic Web, vol. 13870, 2023.

< 22 >

2. Graph Query Evaluation: Conjunctive Regular Path Query

Worst-case-optimal-join-based evaluation [10-11] • Considers worst-case-optimal-joining the triple

patterns to get the CRPQ result (i.e., extending one

variable at a time)

• The CRPQ query planning problem is thus reduced to

a variable ordering problem

• Also uses worst-case-optimal joins to plan the
RPQs without Kleene closures, since they can be

viewed as ”chain BGPs”

• Uses fix-point to evaluate Kleene closures in RPQs

• Constrains that at most 1 RPQ can take part in each

WCOJ; all the others are checked for satisfaction after

the join
Query:

a b c

WCOJ b FP

WCOJ

WCOJ c

a b

WCOJ

[10] T. A. Cucumides Faúndez, “Size bounds and algorithms for conjunctive regular
path queries,” Mar. 2022. doi: 10.7764/tesisUC/ING/63591.
[11] N. Karalis, A. Bigerl, L. Heidrich, M. A. Sherif, and A.-C. N. Ngomo, “Efficient
Evaluation of Conjunctive Regular Path Queries Using Multi-way Joins,” 2024.

< 23 >

2. Graph Query Evaluation: Conjunctive Regular Path Query

Unified plan space for CRPQs • Represents RPQ and subgraph matching by the

same set of operators
• Incorporates all state-of-the-art subgraph

matching and RPQ planning techniques

• Can express plans that were previously

inexpressible: hybrid subgraph matching +

hybrid RPQ plan

Query:

a b c

WCOJ b WCOJ

BJ c

a b

WCOJ

< 24 >

Beyond conjunctive graph & regular path (CPRQ) queries

Cardinality
Estimator

Cost
Estimator

Plan
Enumerator

Cardinality
Estimator

Cost
Estimator

Plan
Enumerator

Logical planner
P

hysical planner

RDF store

GGP
Node

BGP Node UNION Node

GGP
Node

GGP
Node

BGP Node BGP Node

OPTIONAL Node

GGP
Node

BGP Node

BJ

WJ WJ

WJ ?stu ?prof ?stu

?prof ?course

Plan V
isualizer

gFOV

[12] Y. Pang, L. Yang, L. Zou, and M. T. Özsu, “gFOV: A Full-Stack
SPARQL Query Optimizer & Plan Visualizer,” CIKM 2023.
[13] L. Yang, Y. Zhou, Y. Pang, and L. Zou, “Efficient Pruned Top-K
Subgraph Matching with Topology-Aware Bounds,” CIKM 2024.

• Scarcely any work addresses the planning
of graph query constructs beyond subgraph
matching and RPQs, e.g., aggregation, top-
k [13], UNION, and OPTIONAL

• Though these constructs have counterparts
in relational queries, graph queries may
benefit from jointly optimizing them with
subgraph matching and RPQs
• [12] explores this incipiently by jointly

optimizing the UNION and OPTIONAL
operators with conjunctive graph
queries

2. Graph Query Evaluation: Other Graph Query Constructs

a b c

WCOJ b WCOJ

BJ c

a b

WCOJ

< 25 >

Query Re-Writing: Aims to reduce the intermediate result sizes.

[[𝑃1 AND { {𝑃2 } UNION {𝑃3 } }]] = [[{𝑃1 AND 𝑃2 } UNION {𝑃1 AND 𝑃3 }]]

Merge Rewriting

2. Graph Query Evaluation: Other Graph Query Constructs

< 26 >

SELECT ?x ?same
WHERE
{

!!
?x dbo:wikiPageWikiLink

dbr:President_of_the_United_States.
!" OPTIONAL{?x owl:sameAs ?same}

}

SELECT ?x ?same
WHERE
{

!!
?x dbo:wikiPageWikiLink

dbr:President_of_the_United_States.
!! OPTIONAL{

!"

?x dbo:wikiPageWikiLink
dbr:President_of_the_United_States.

?x owl:sameAs ?same. }
}

!! OPTIONAL {!"}

!! OPTIONAL {!!!"}

Transform

BGP node

OPTIONAL graph pattern node

Group graph pattern node

!+

!,

!+

!,!+Injection Rewriting

Query Re-Writing: Aims to reduce the intermediate result sizes.

[[𝑃1 OPTIONAL {𝑃2 }]] = [[𝑃1 OPTIONAL {𝑃1 AND 𝑃2 }]]

2. Graph Query Evaluation: Other Graph Query Constructs

< 27 >

3. Cardinality Estimation

Conjunctive graph
query Regular path query

Conjunctive regular path query

Other Constructs: OPTIONAL, UNION,
AGGREGATION, FILTER, TOP-K ……

Cardinality estimators for each component

A Uniform Graph Query Engine

< 28 >

3. Cardinality Estimation : Subgraph Query

Cost estimation

• Largely based on the same frameworks as relational databases: synopses, sampling, and
machine learning

• More challenging to estimate than relational join queries due to richer joins. To address:
• Building synopses based on subgraph patterns [14]
• Devising sampling strategies that reduce the sampling space [14]
• Using graph neural networks (GNN) to capture the graph structure [15]
• …

• Essentially distinct from its relational counterpart due to the different join methods and
storage schemes

[15] K. Kim, H. Kim, G. Fletcher, and W. Han, “Combining Sampling and Synopses with Worst-Case Optimal Runtime and Quality Guarantees for Graph
Pattern Cardinality Estimation,” SIGMOD 2021.
[16] T. Schwabe and M. Acosta, “Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks,” Proc. ACM Manag.
Data 2, 1, Article 44 (March 2024).

• [8] proposes a statistic-based cost & cardinality estimation framework for their proposed hybrid
RPQ plans

• [7] proposes a cost & cardinality estimation framework for multi-query RPQ plans based on 𝛼-
relational-algebra, using both statistics and online sampling to enhance scalability

• [5] proposes a statistic-based cost & cardinality estimation framework for finite-automata-based
plans

All the methods above assume the maximum length of regular paths with Kleene closures
are known in certain cases, which is usually not the case
How to effectively remove this assumption is an important open problem

< 29 >

3. Cardinality Estimation : Regular Path Query

[8] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2016. Query Planning for Evaluating SPARQL Property Paths. In Proceedings of the 2016
International Conference on Management of Data.
[7] Y. Pang, L. Zou, J. X. Yu, and L. Yang, “Materialized View Selection & View-Based Query Planning for Regular Path Queries,” Proc. ACM Manag.
Data 2, 3, Article 152 (June 2024).
[5] Van-Quyet Nguyen, Quyet-Thang Huynh, and Kyungbaek Kim. 2022. Estimating Searching Cost of Regular Path Queries on Large Graphs by
Exploiting Unit-Subqueries. Journal of Heuristics 28, 2 (April 2022), 149–169.

< 30 >

3. Cardinality Estimation : Other Graph Query Constructs

Since these query construct have direct counterparts in relational queries,
it is still an open problem whether their cost & cardinality

• Should be estimated differently on graphs?
• Can be estimated more efficiently using novel techniques on graphs?

UNION operator’s cost:

OPTIONAL operator’s cost:

[12] Y. Pang, L. Yang, L. Zou, and M. T. Özsu, “gFOV: A Full-Stack SPARQL Query Optimizer & Plan Visualizer,” CIKM 2023.

< 31 >

gStore: Our Open-Source RDF Graph Database

ü Native graph storage
ü Uniform query plan representation

(binary + worst-case-optimal joins) for
conjunctive graph queries and regular path
query.

ü Supports billion-edge RDF graphs on a
single server

In the near future:
Support both RDF & property graphs
• Same parsing, planning, and evaluation

workflow
• Unified query plan representation
• Adaptive storage

【Lei Zou, et al, gStore: Answering SPARQL Queries Via Subgraph Matching, in
Proceedings of 37th International Conference on very Large Databases (VLDB), 2011】

< 32 >

Take Home Message

• A uniform graph query representation lays the basis for graph query
evaluation and optimization, which requires more extensive research.

• Cardinality Estimator for different graph query components are vital in
optimizing graph planning.

• The interactions and interdependence between the query layer and the
storage layer in a graph database are worthy of further investigation..

< 33 >

References
[1] A. Mhedhbi and S. Salihoğlu, “Modern techniques for querying graph-structured relations: foundations, system implementations, and open
challenges,” Proc. VLDB Endow., 2022.
[2] A. Mhedhbi, and S. Salihoğlu, "Optimizing subgraph queries by combining binary and worst-case optimal joins,” Proc. VLDB Endow., 2019.
[3] N. Yakovets, P. Godfrey, and J. Gryz, “Query Planning for Evaluating SPARQL Property Paths,” in Proceedings of the 2016 International Conference
on Management of Data.
[4] Y. Pang, L. Zou, J. X. Yu, and L. Yang, “Materialized View Selection & View-Based Query Planning for Regular Path Queries,” Proc. ACM Manag.
Data 2, 3, Article 152 (June 2024).
[5] Y. Pang, L. Yang, L. Zou, and M. T. Özsu, “gFOV: A Full-Stack SPARQL Query Optimizer & Plan Visualizer,” CIKM 2023.
[6] L. Yang, Y. Zhou, Y. Pang, and L. Zou, “Efficient Pruned Top-K Subgraph Matching with Topology-Aware Bounds,” CIKM 2024.
[7] K. Kim, H. Kim, G. Fletcher, and W. Han, “Combining Sampling and Synopses with Worst-Case Optimal Runtime and Quality Guarantees for Graph
Pattern Cardinality Estimation,” SIGMOD 2021.
[8] T. Schwabe and M. Acosta, “Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks,” Proc. ACM Manag. Data
2, 1, Article 44 (March 2024).
[9] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J. Sci. Comput. 20(1), 1998.
[10] P. Peng, M. T. Özsu, L. Zou, C. Yan, and C. Liu, “MPC: Minimum property-cut RDF graph partitioning,” ICDE 2022.
[11] P. Peng, S. Ji, M. T. Özsu, and L. Zou, “Minimum motif-cut: a workload-aware RDF graph partitioning strategy,” The VLDB Journal (2024).
[12] R. Angles, C. B. Aranda, A. Hogan, C. Rojas, and D. Vrgoč, “WDBench: A Wikidata Graph Query Benchmark,” ISWC 2022.
[13] M. Morsey, J. Lehmann, S. Auer, A.-C. Ngonga Ngomo, “DBpedia SPARQL benchmark – performance assessment with real queries on real
data,”ISWC 2011.
[14]Pacaci A, Bonifati A, Özsu M T. Evaluating complex queries on streaming graphs[C]//2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 2022: 272-285.
[15] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL knowledge base systems,” J. Web Semantics 3(2-3), 158–182 (2005).
[16] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and N. Advokaat, “gMark: Schema-Driven Generation of Graphs and Queries,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 4, pp. 856–869, Apr. 2017.
[17] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified Stress Testing of RDF Data Management Systems,” ISWC 2014.
[18] O. Erling et al., “The LDBC Social Network Benchmark: Interactive Workload,” SIGMOD 2015.
[19] Ldbc. (n.d.). Ldbc/LDBC_FINBENCH_DOCS: Specification of the LDBC financial benchmark. GitHub. https://github.com/ldbc/ldbc_finbench_docs.

Thank you for listening!

