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Graph databases: a type of 
NoSQL database
Focuses on storing and 
querying the relationships 
between entities using the 
graph abstraction

Distinction from relational 
databases

• (Semi-)Schema-less: do not 
have data schemas a priori, 
flexible

• Adjacency storage: materializes 
the relationships between 
entities, accessible without joins

• Deep queries: subgraph queries 
with complex join patterns, path 
queries with unlimited recursion



< 5 >

Graph Data & Query Model

SELECT ?person WHERE {
?david <type> <Person> .
?david <name> “David” .
?david <knows>+ ?person .

}

SPARQL

Person

Name David
Age 45

PersonPerson

Post

follows

follows

follows

creates likes

MATCH (:Person WHERE 
name=‘David’)-[:knows*1..]-
>(person)
RETURN person

GQL

Property 
Graph

A

BD

P

follows

follows

follows

creates likes

name

Person

Post

typetype

type

type

David

RDF

14

age

Differences
• Property graphs represents properties by key-value tables associated with vertices & edges
• RDF represents properties by creating property vertices and linking the entity vertices & edges with 

them
• Affects the storage layout, query optimization and evaluation
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Graph Data & Query Model

SELECT ?person WHERE {
?david <type> <Person> .
?david <name> “David” .
?david <knows>+ ?person .

}

SPARQL

Person

Name David
Age 45

PersonPerson

Post

follows

follows

follows

creates likes

MATCH (:Person WHERE 
name=‘David’)-[:knows*1..]-
>(person)
RETURN person

GQL

Property 
Graph
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BD

P

follows

follows

follows

creates likes

name

Person

Post

typetype

type

type

David

RDF

14

age

Similarities
• The core query constructs are the same:

• Conjunctive graph query, i.e., subgraph matching
• Regular path query
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Graph Data & Query Model

Conjunctive graph query

Given a query graph, find subgraphs in the 
data graph that are isomorphic to it

Regular path query

Given a regular expression on the set of 
edge labels, find vertices pairs in the data 
graph connected by paths with edge label 
sequences that can be recognized by the 
regular expression

S T

P

FOLLOWS*

AUTHORS AUTHORS

S T

P
AUTHORS AUTHORS

S TFOLLOWS*

Conjunctive regular path query (CRPQ)
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Beyond conjunctive graph & regular path queries

SELECT DISTINCT ?replyAuthorId WHERE {
?message :id “1”^^xsd:long .
?message hasCreator ?messageCreator.
?repliedComment :replyOf ?message .
?repliedComment :hasCreator ?replyAuthor.
?replyAuthor :id ?replyAuthorId .
OPTIONAL

{ ?replyAuthor :directKnows/ :directKnows? ?messa
geCreator. }
}

Graph Data & Query Model

• Besides conjunctive regular path query (CRPQ), existing
graph query languages such as SPARQL, Cypher and
GQL also include other graph query constructs, 
OPTIONAL, AGGREGATION, UNION and top-k.

SPARQL
MATCH (message {id: 1})
MATCH (replyAuthor)<-[:hasCreator]-
(repliedComment)-[:replyOf]->(message)-
[:hasCreator]->(messageCreator)
OPTIONAL MATCH (replyAuthor)-
[:directKnows*1..2]->(messageCreator)
RETURN DISTINCT replyAuthor.id AS replyAuthorId

Cypher

*1..2
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2. Graph Query Evaluation: Graph Algebra

[14]Pacaci A, Bonifati A, Özsu M T. Evaluating complex queries on streaming graphs[C]//2022 IEEE 38th International Conference on Data Engineering (ICDE). 
IEEE, 2022: 272-285.

A streaming graph algebra incorporating regular path queries and subgraph queries[14]

Subgraph Matching Operator

Path Navigation Operator 

Window Operator 

Union Operator 

FILTER Operator 

Logical Plan
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• The overall workflow of graph query planning is not much 
different from planning in relational databases
• Plan Enumerator: Enumerates semantically equivalent 

query plans
• Cardinality & Cost Estimator: estimates the cost of each 

query plan so that the executor can choose the expected 
cheapest plan

• However, there are the following differences in the actual 
planning procedure:
• Plan Representation: due to the different query syntax & 

semantics
• Cost & cardinality estimation schemes: due to the 

different storage scheme and physical operators

Query

Plan Enumerator

Plan 1 Plan 2 Plan k...

Cardinality & Cost
Estimator

Cost 1 Cost 2 Cost k...

Lowest-cost 
plan

Executor

Results

2. Graph Query Evaluation: Workflow
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2. Graph Query Evaluation: Workflow

Conjunctive graph 
query Regular path query

Conjunctive regular path query

Other Constructs: OPTIONAL, UNION,
AGGREGATION, FILTER, TOP-K ……

A Uniform Graph Query Engine

• Representing graph query plan in a uniform manner.
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Subgraph Query (Conjunctive Graph Query) : Given a query  𝑄 and a data graph 𝐺, 𝑄 is subgraph
isomorphism to 𝐺, if and only if there exists an injective function 𝑓: V Q → 𝑉(𝐺), such that
1. ∀ 𝑢 ∈ 𝑉 𝑄 , 𝑓 𝑢 ∈ 𝑉 𝐺 , 𝐿! 𝑢 = 𝐿! 𝑓 𝑢 , where 𝑉 𝑄 and 𝑉 𝐺 denotes all vertices in 𝑄 and 𝐺,

respectively; and 𝐿! 3 denotes the corresponding vertex label.
2. ∀𝑢"𝑢# ∈ 𝐸 𝑄 , 𝑓(𝑢")𝑓(𝑢#) ∈ 𝐸 𝐺 , 𝐿$ 𝑢"𝑢# = 𝐿$ 𝑓 𝑢" 𝑓(𝑢#)

A

B C

A

B C

A

1

2 3

1

2

4

𝑄 𝐺

2. Graph Query Evaluation: Subgraph Query
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2. Graph Query Evaluation: Subgraph Query

A

B C

𝑢!

𝑢" 𝑢#

A

B C

A

𝑣!

𝑣#𝑣"

𝑣$

Binary join

u1 u2
v1 v2

v4 v2

… …

T1

u1 u3
v1 v2

v4 v2

... …

T2

u2 u3
v2 v3

T3

𝑅 = 𝑇# ⋈ 𝑇$ ⋈ 𝑇%

𝑇# 𝑇$

⋈ 𝑇%

⋈

• Commonly used in relational databases
• Can be more efficient than worst-case-optimal 

join on acyclic query graphs

Algorithms for joins: 
The core operator in subgraph queries

Query Graph Q Data Graph G
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2. Graph Query Evaluation: Subgraph Query

Algorithms for joins: 
The core operator in subgraph queries

A

B C

𝑢!

𝑢" 𝑢#

Query Graph

A

B C

A

𝑣!

𝑣#𝑣"

𝑣$

Data Graph

Worst-case optimal join

u2 u3
v2 v3

… …

... …

B Ca
u2 u3

T1

v1

v1 v4 …
…

𝑁(𝑣")

v4 ......

𝑁(𝑣#)

• A class of multi-way 
joins

• The number of 
intermediate results 
are guaranteed to not 
exceed the AGM 
bound [1] 

• Especially efficient on 
cyclic query graphs

[1] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.



< 15 >

2. Graph Query Evaluation: Subgraph Query

A hybrid query plan
representing subgraph query

An example hybrid query plan

Image taken from: Linglin Yang, Lei Yang, Yue Pang, and Lei Zou. 
2022. GCBO: A Cost-based Optimizer for Graph Databases. 
(CIKM '22).

• Most existing works focus on worst-case-optimal-

join-only plans, which extends the intermediate 

match by one query vertex at a time

• The query planning problem is reduced to query 

vertex ordering

• [2] proposes a hybrid plan space considering both 

binary and worst-case-optimal joins

• Benefits both acyclic and cyclic queries

[2] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré, “EmptyHeaded: A Relational 
Engine for Graph Processing,” in Proceedings of the 2016 International Conference 
on Management of Data.
[3] A. Mhedhbi, and S. Salihoğlu, "Optimizing subgraph queries by combining 
binary and worst-case optimal joins,” Proc. VLDB Endow., 2019.
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• An RPQ 𝑹 is a regular expression on the edge labels, with the following form:
𝑅 → 𝜖 𝑎 𝑅# / 𝑅$ 𝑅# 𝑅$ 𝑅? 𝑅∗ | 𝑅*

𝑹’s result on the edge-labeled directed graph 𝐺 = (𝑉, 𝐸, Σ, l) is the set of node pairs
with at least a path whose edge label sequence satisfies 𝑹

𝑅 + = {⟨𝑢, 𝑣⟩|∃𝑝 ∈ 𝐺, 𝑝. 𝑠 = 𝑢 ∧ 𝑝. 𝑡 = 𝑣 ∧ 𝑙 𝑝 ∈ 𝐿 𝑅 )
Person

PersonPerson

Post

follows

follows

follows

creates likes

“People you follow indirectly”
𝑓𝑜𝑙𝑙𝑜𝑤𝑠% &

= { 𝑣!, 𝑣# , 𝑣!, 𝑣" , 𝑣!, 𝑣! , 𝑣#, 𝑣" , 𝑣#, 𝑣! , 𝑣#, 𝑣# , 𝑣", 𝑣! , 𝑣", 𝑣# , 𝑣", 𝑣" }

“Posts liked by people you follow”
[[𝑓𝑜𝑙𝑙𝑜𝑤𝑠 / 𝑙𝑖𝑘𝑒𝑠]] &= { 𝑣!, 𝑣$ }

𝑣%

𝑣# 𝑣&

𝑣"

2. Graph Query Evaluation: Regular Path Query
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[4] André Koschmieder and Ulf Leser. 2012. Regular Path Queries on Large Graphs. In Scientific and Statistical Database Management, Anastasia Ailamaki
and Shawn Bowers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 177–194.
[5] Van-Quyet Nguyen, Quyet-Thang Huynh, and Kyungbaek Kim. 2022. Estimating Searching Cost of Regular Path Queries on Large Graphs by 
Exploiting Unit-Subqueries. Journal of Heuristics 28, 2 (April 2022), 149–169.

2. Graph Query Evaluation: Regular Path Query

1. Finite-automaton-based evaluation

a b c

a

Naturally suited for native graph storage

• Converts the regular expression into a finite 

automaton
• Conceptually, compute the product automaton 

between the regex’s automaton and the data 

graph, in which all the reachable node pairs are 

the results

• Realistically, the automaton guides the search 
on the data graph

• Processes Kleene closures by looping in the 

automaton

𝑎/𝑏/𝑐 !
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[6] S. Dey, V. Cuevas-Vicenttín, S. Köhler, E. Gribkoff, M. Wang, and B. Ludäscher, “On implementing provenance-aware regular path queries with 
relational query engines,” in Proceedings of the Joint EDBT/ICDT 2013 Workshops on - EDBT ’13. 
[7] Y. Pang, L. Zou, J. X. Yu, and L. Yang, “Materialized View Selection & View-Based Query Planning for Regular Path Queries,” Proc. ACM Manag. Data 
2, 3, Article 152 (June 2024).

Naturally suited for hybrid storage

2. Graph Query Evaluation: Regular Path Query

2. 𝜶-relational-algebra-based evaluation • Converts the regular expression into a relational 

algebra tree extended with the 𝜶 (fix-point) 
operator

• Executes the tree bottom-up

• 𝛼 (fix-point): self-join the operand result 

table until no new rows are produced

• Processes Kleene closures by 𝜶 (fix-point) 
operators, no intermediate states like automata

• Can be extended to support multi-query 

optimization [7]

𝑎/𝑏/𝑐 !
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[8] N. Yakovets, P. Godfrey, and J. Gryz, “Query Planning for Evaluating SPARQL Property Paths,” in Proceedings of the 2016 International Conference on 
Management of Data. 

2. Graph Query Evaluation: Regular Path Query

3. A hybrid query plan for regular path query [8] • Plan space subsumes those of the previous two 

evaluation methods

• Allows multiple automata in a plan with 

bidirectional traversal
• Can materialize the result of certain automata to 

use as transitions in other automata (e.g., 𝑊"# in 

the figure)

• Simulates intermediate result tables in 

relational algebra

• Allows “partial loop caching” of Kleene closures –

a point on the spectrum between automaton loop & 

fix-point

𝑎/𝑏/𝑐 !
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2. Graph Query Evaluation: Conjunctive Regular Path Query

Conjunctive graph 
query Regular path query

Conjunctive regular path query

A conjunctive regular path query (CRPQ) is a conjunction of regular path queries (RPQs):

𝑄 𝑥̅ ←@
'(!

)

𝑅*! 𝑦' , 𝑧' ∧ @
'()%!

+

𝑟'(𝑦' , 𝑧')

• 𝑎' ∈ Σ (edge labels)
• 𝑟': RPQs
• 𝑥̅ = {𝑥!, … , 𝑥,} ⊆ {𝑦!, 𝑧!, … , 𝑦+ , 𝑧+} (output variables)
We can view CRPQs as subgraph matching queries whose edges can be specified by either edge labels or RPQs

S T

P

FOLLOWS*

AUTHORS AUTHORS
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2. Graph Query Evaluation: Conjunctive Regular Path Query

• Considers binary-joining the triple patterns to 

get the CRPQ result

• The CRPQ query planning problem is thus 

reduced to a join ordering problem

• Uses the ALP procedure as in the SPARQL 1.1 

specification to evaluate RPQs, which is 

basically BFS guided by finite automata (i.e., 

fixed RPQ plans)

• The WCOJ nodes in the figure are used to 

simulate the automata-guided traversal

Binary-join-based evaluation [9]

a b 

BJ c

BJ b

BJ

BJ

FP

WCOJ

WCOJ c

a b

Query:
[9] J. Aimonier-Davat, H. Skaf-Molli, P. Molli, M.-H. Dang, and B. Nédelec, “Join 
Ordering of SPARQL Property Path Queries,” in The Semantic Web, vol. 13870, 2023.
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2. Graph Query Evaluation: Conjunctive Regular Path Query

Worst-case-optimal-join-based evaluation [10-11] • Considers worst-case-optimal-joining the triple 

patterns to get the CRPQ result (i.e., extending one 

variable at a time)

• The CRPQ query planning problem is thus reduced to 

a variable ordering problem

• Also uses worst-case-optimal joins to plan the 
RPQs without Kleene closures, since they can be 

viewed as ”chain BGPs”

• Uses fix-point to evaluate Kleene closures in RPQs

• Constrains that at most 1 RPQ can take part in each 

WCOJ; all the others are checked for satisfaction after 

the join
Query:

a b  c

WCOJ b  FP

WCOJ

WCOJ c

a b

WCOJ

[10] T. A. Cucumides Faúndez, “Size bounds and algorithms for conjunctive regular 
path queries,” Mar. 2022. doi: 10.7764/tesisUC/ING/63591.
[11] N. Karalis, A. Bigerl, L. Heidrich, M. A. Sherif, and A.-C. N. Ngomo, “Efficient 
Evaluation of Conjunctive Regular Path Queries Using Multi-way Joins,” 2024.
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2. Graph Query Evaluation: Conjunctive Regular Path Query

Unified plan space for CRPQs • Represents RPQ and subgraph matching by the 

same set of operators
• Incorporates all state-of-the-art subgraph 

matching and RPQ planning techniques

• Can express plans that were previously 

inexpressible: hybrid subgraph matching + 

hybrid RPQ plan

Query:

a b  c

WCOJ b  WCOJ

BJ c

a b

WCOJ
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Beyond conjunctive graph & regular path (CPRQ) queries

Cardinality
Estimator

Cost
Estimator

Plan
Enumerator

Cardinality
Estimator

Cost
Estimator

Plan
Enumerator

Logical planner
P

hysical planner

RDF store

GGP
Node 

BGP Node UNION Node 

GGP
Node 

GGP
Node 

BGP Node BGP Node 

OPTIONAL Node 

GGP
Node 

BGP Node 

BJ

WJ WJ

WJ ?stu ?prof ?stu

?prof ?course

Plan V
isualizer

gFOV

[12] Y. Pang, L. Yang, L. Zou, and M. T. Özsu, “gFOV: A Full-Stack 
SPARQL Query Optimizer & Plan Visualizer,” CIKM 2023.
[13] L. Yang, Y. Zhou, Y. Pang, and L. Zou, “Efficient Pruned Top-K 
Subgraph Matching with Topology-Aware Bounds,” CIKM 2024.

• Scarcely any work addresses the planning 
of graph query constructs beyond subgraph 
matching and RPQs, e.g., aggregation, top-
k [13], UNION, and OPTIONAL

• Though these constructs have counterparts 
in relational queries, graph queries may 
benefit from jointly optimizing them with 
subgraph matching and RPQs
• [12] explores this incipiently by jointly 

optimizing the UNION and OPTIONAL 
operators with conjunctive graph 
queries

2. Graph Query Evaluation: Other Graph Query Constructs

a b  c

WCOJ b  WCOJ

BJ c

a b

WCOJ
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Query Re-Writing: Aims to reduce the intermediate result sizes.

[[𝑃1 AND { {𝑃2 } UNION {𝑃3 } } ]] = [[ {𝑃1 AND 𝑃2 } UNION {𝑃1 AND 𝑃3 } ]]

Merge Rewriting

2. Graph Query Evaluation: Other Graph Query Constructs
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SELECT ?x ?same
WHERE
{

!!
?x dbo:wikiPageWikiLink

dbr:President_of_the_United_States.
!" OPTIONAL{?x owl:sameAs ?same}

}

SELECT ?x ?same
WHERE
{

!!
?x dbo:wikiPageWikiLink

dbr:President_of_the_United_States.
!! OPTIONAL{

!"

?x dbo:wikiPageWikiLink
dbr:President_of_the_United_States.

?x owl:sameAs ?same. }
}

!! OPTIONAL {!"}

!! OPTIONAL {!!!"}

Transform

BGP node 

OPTIONAL graph pattern node

Group graph pattern node

!+

!,

!+

!,!+Injection Rewriting

Query Re-Writing: Aims to reduce the intermediate result sizes.

[[𝑃1 OPTIONAL {𝑃2 } ]] = [[𝑃1 OPTIONAL {𝑃1 AND 𝑃2 } ]]

2. Graph Query Evaluation: Other Graph Query Constructs
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3. Cardinality Estimation

Conjunctive graph 
query Regular path query

Conjunctive regular path query

Other Constructs: OPTIONAL, UNION,
AGGREGATION, FILTER, TOP-K ……

Cardinality estimators for each component

A Uniform Graph Query Engine
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3. Cardinality Estimation : Subgraph Query

Cost estimation

• Largely based on the same frameworks as relational databases: synopses, sampling, and 
machine learning

• More challenging to estimate than relational join queries due to richer joins. To address:
• Building synopses based on subgraph patterns [14]
• Devising sampling strategies that reduce the sampling space [14]
• Using graph neural networks (GNN) to capture the graph structure [15]
• …

• Essentially distinct from its relational counterpart due to the different join methods and 
storage schemes

[15] K. Kim, H. Kim, G. Fletcher, and W. Han, “Combining Sampling and Synopses with Worst-Case Optimal Runtime and Quality Guarantees for Graph 
Pattern Cardinality Estimation,” SIGMOD 2021.
[16] T. Schwabe and M. Acosta, “Cardinality Estimation over Knowledge Graphs with Embeddings and Graph Neural Networks,” Proc. ACM Manag. 
Data 2, 1, Article 44 (March 2024).



• [8] proposes a statistic-based cost & cardinality estimation framework for their proposed hybrid 
RPQ plans

• [7] proposes a cost & cardinality estimation framework for multi-query RPQ plans based on 𝛼-
relational-algebra, using both statistics and online sampling to enhance scalability

• [5] proposes a statistic-based cost & cardinality estimation framework for finite-automata-based 
plans

All the methods above assume the maximum length of regular paths with Kleene closures 
are known in certain cases, which is usually not the case
How to effectively remove this assumption is an important open problem

< 29 >

3. Cardinality Estimation : Regular Path Query

[8] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2016. Query Planning for Evaluating SPARQL Property Paths. In Proceedings of the 2016 
International Conference on Management of Data.
[7] Y. Pang, L. Zou, J. X. Yu, and L. Yang, “Materialized View Selection & View-Based Query Planning for Regular Path Queries,” Proc. ACM Manag. 
Data 2, 3, Article 152 (June 2024).
[5] Van-Quyet Nguyen, Quyet-Thang Huynh, and Kyungbaek Kim. 2022. Estimating Searching Cost of Regular Path Queries on Large Graphs by 
Exploiting Unit-Subqueries. Journal of Heuristics 28, 2 (April 2022), 149–169.
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3. Cardinality Estimation : Other Graph Query Constructs

Since these query construct have direct counterparts in relational queries,
it is still an open problem whether their cost & cardinality

• Should be estimated differently on graphs?
• Can be estimated more efficiently using novel techniques on graphs?

UNION operator’s cost:

OPTIONAL operator’s cost:

[12] Y. Pang, L. Yang, L. Zou, and M. T. Özsu, “gFOV: A Full-Stack SPARQL Query Optimizer & Plan Visualizer,” CIKM 2023.
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gStore: Our Open-Source RDF Graph Database

ü Native graph storage
ü Uniform query plan representation 

(binary + worst-case-optimal joins) for 
conjunctive graph queries and regular path
query.

ü Supports billion-edge RDF graphs on a 
single server

In the near future:
Support both RDF & property graphs
• Same parsing, planning, and evaluation 

workflow
• Unified query plan representation
• Adaptive storage

【Lei Zou, et al, gStore: Answering SPARQL Queries Via Subgraph Matching, in 
Proceedings of 37th International Conference on very Large Databases (VLDB), 2011】
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Take Home Message

• A uniform graph query representation lays the basis for graph query 
evaluation and optimization, which requires more extensive research.

• Cardinality Estimator for different graph query components are vital in
optimizing graph planning.

• The interactions and interdependence between the query layer and the 
storage layer in a graph database are worthy of further investigation..
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Thank you for listening!


