
The LDBC Financial Benchmark
Shipeng Qi

(with contributions from members of the FinBench Task Force)

Motivation of FinBench

• SNB, Social Network Benchmark, designed based on social network

scenarios, is limited when applied to the financial service industry.

• FinBench, following LDBC’s chokepoint-driven benchmark design

philosophy, is to design a benchmark for evaluating graph database systems

in financial scenarios with new chokepoints embedded, based on

financial data patterns and workload patterns.

Key Features in FinBench

Dataset Patterns

• Power-law degree distribution

• Edge multiplicity

• Asymmetric dynamic temporal graph

• Hub vertex

Workload Patterns

• Read-Write query

• Time-window filtering

• Recursive path filtering

• Patterns in temporal graph

• Truncation

• Time-biased query mix

Dataset: Schema

● Vertices are entities in financial systems, while edges are activities involving them

● Asymmetric dynamic temporal graph

Dataset: Distribution

● Transfer edge: Power-law distribution

● Hub vertex: degree increases with

scale

○ MaxDegree = 1k in SF1

○ MaxDegree = 10k in SF10

○ MaxDegree = 100k in SF100

○ …

Degree and multiplicity in SF0.1 dataset of v0.1

Workload: Read-Write Query

• Complex read query: it
represents a risk control strategy

• RW query: Transaction-wrapped
complex reads (risk control
strategy)

• If the risk control strategy is not
hit, transaction commits with
write query. Otherwise,
transaction aborts

Transfer under transfer cycle detection strategy
[Ref: Transaction Read Write 3]

Workload: TimeWindow Filtering

• Fact: queries only look back in a
limited time window

• Filtering: filter edges between

startTime and endTime in

traversal

Blocked medium related accounts
[Ref: Transaction Complex Read 1]

Workload: Recursive Path Filtering

Assuming: A -[e1]-> B -[e2]-> ... -> X

• Timestamp order: e1 < … < ei

• Amount order: e1 > … > ei

Transfer trace after loan applied
[Ref: Transaction Complex Read 8]

Workload: Patterns in temporal graph

Cycle
[Ref: Transaction Complex Read 4]

Tree
[Ref: Transaction Complex Read 6]

chain
[Ref: Transaction Complex Read 11]

Workload: Truncation

● In practice, system optimization cannot

keep up with the increase of the workload

complexity

● Truncate less-important edges to avoid

complexity explosion, which is actually

sampling

● TruncationLimit and TruncationOrder is

defined to ensure consistency of results.

For example, keep only the top 100 edges in

order of timestamp descending

src :
Account

dst1l1 :
Account

dst1l2 :
Account

…

dst1l3 :
Account

dst2l1 :
Account

dst2l2 :
Account

…

dst2l3:
Account

✅

✅

✅

✅

Workload: Time-biased query mix

Inherited from SNB’ query mix:
• Write queries and read-write queries: operations issue times generated by the

data generator
• Times of complex reads are expressed in terms of update operations (update

frequencies). A sequence of short reads follows each complex read instance

Time-biased query mix:
• Fact: complex read – risk control strategy, simple read – simple checks
• A time-biased function is designed that a complex read of longer time window is

followed by more simple reads

New Chokepoint #1 in Storage

[STORAGE] Temporal access locality and
performance

Queries access the edges in specific time windows

LabelId TemporalId DstVid EId

VertexUid : OutEdgeUid OutEdgeUid InEdgeUid

SrcVid

OutEdgeUid InEdgeUid

Boost the time-window filtering due to edges well-sorted in storage

New Chokepoint #2 in Language

Assuming: A -[e1]-> B -[e2]-> ... -> X

§ Timestamp order: e1 < e2 < … < ei

§ Amount order: e1 > e2 > … > ei

§ Time window: ei-1 < ei < ei-1 +△

[LANG] Language Features: Recursive path filtering pattern

Possible solution (non-official):
● Outside the brackets: vertex to start, edge types, hopping from 1

to $maxhops
● Clause inside brackets constrains the path
● SLIDING subclause means a window sliding on the path of

LENGTH and STEP
● WHERE subclause defines the filter
● UNTIL subclause defines the termination condition

Acknowledgement: Prof. Yin andhis teamat SJTU

Another example in language chokepoint

Arxiv doi: 2407.09566
Acknowledgement: Prof. Crowe

Malcom Crowe designed a syntax to expand the definition and usage
of Truncation, which is also implemented in his PyrrhoDBMS,
according to his short paper at DBKDA 2024.

We are working on the cross-validation to accept it as an official
implementation.

https://arxiv.org/abs/2407.09566

Version plan

Version 0.1.0

• All key features in proposal implemented

• Dataset: Up to SF10 scale supported

• Workload: Transaction Workload, including 12

complex read queries, 6 simple read queries, 19

write queries and 3 read-write queries

Version 0.2.0 (TBA in short)

• Benchmark suite: parameter curation

optimization

• Dataset: support SF30 and SF100, SF 300 WIP

• Paper: WIP

More future work：automated benchmarking, analytic workload, etc…

Thanks!

Acknowledgement
Developers: Shipeng Qi, Bing Tong, Jiatao Hu, Bin Yang, Changyuan Wang

Collaboration: Tao Lv@CSTC, Prof. Lei Zou@PKU，Prof. Malcome Crowe,

Prof. Qiang Yin@SJTU

Welcome collaboration on benchmark and

research on chokepoints

Contact me at shipeng.qi AT ldbcouncil.org
WeChat QR Code

