
The LDBC benchmark suite

Gábor Szárnyas
LDBC TUC meeting  |  2024-08-30  |  Guangzhou & virtual



Inspiration: TPC benchmarks



TPC: Transaction Processing Performance Council

Non-profit founded in 1988

Benchmark specifications

Stringent auditing process

Influential benchmarks: TPC-C, TPC-H, TPC-DS



~1000× throughput 
increase over 20 years

Even more in price-perf



LDBC benchmarks
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scale factors:
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FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



certified 
auditors

scale factors:
SF30 = 30GiB CSV

Similarities to TPC benchmarks

macro/application-
level benchmarks

flexible hardware 
and software setup

FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



certified 
auditors

scale factors:
SF30 = 30GiB CSV

Similarities to TPC benchmarks

flexible hardware 
and software setup

macro/application-
level benchmarks

FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



certified 
auditors

scale factors:
SF30 = 30GiB CSV

Similarities to TPC benchmarks

macro/application-
level benchmarks

flexible hardware 
and software setup

FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



certified 
auditors

scale factors:
SF30 = 30GiB CSV

Similarities to TPC benchmarks

macro/application-
level benchmarks

flexible hardware 
and software setup

FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



certified 
auditors

scale factors:
SF30 = 30GiB CSV

Similarities to TPC benchmarks

macro/application-
level benchmarks

flexible hardware 
and software setup

FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



certified 
auditors

scale factors:
SF30 = 30GiB CSV

Similarities to TPC benchmarks

macro/application-
level benchmarks

flexible hardware 
and software setup

FDRs with metrics,
e.g. throughput@SF

benchmark approval 
and renewal



The Social Network Benchmark (SNB) suite



Data set
and queries
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Parameter selection
● Uniform random parameters → unstable distributions

uniform
random
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name #1-hop #2-hop
Ben 2 3

Carl 4 2

Ada 3 2

…

Parameter curation 
using statistics (“factors”)
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Parameter selection
● Uniform random parameters → unstable distributions
● Curated parameters → tighter distributions, closer to bell curves
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curated uniform
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curated uniform
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curated



SQL:1992

SELECT DISTINCT m.id
FROM (
 SELECT k.p2id AS id
 FROM person Pa,
      knows k
 WHERE Pa.name = $name
   AND Pa.id = k.p1id
 UNION
 SELECT k2.p2id AS id
 FROM person Pa,
      knows k1,
      knows k2
 WHERE Pa.name = $name
   AND Pa.id = k1.p1id
   AND k1.p2id = k2.p1id
   AND k1.p1id <> k2.p2id
 ) Pb,
 Message m
WHERE Pb.id = m.authorId
  AND m.creationDate < $day

Q9($name, $day)

M

Pa Pbknows
*1..2

author

creation date < $day

name = 
$name

SQL/PGQ (SQL:2023)

SELECT id
FROM GRAPH_TABLE (socialNetwork
 MATCH ANY ACYCLIC
  (Pa:Person WHERE Pa.name = $name)
  -[:knows]-{1,2} (Pb:Person)
  -[:author]-> (m:Message)
 WHERE m.creationDate < $day
 COLUMNS (m.id))

GQL

MATCH ANY ACYCLIC
  (Pa:Person WHERE Pa.name = $name)
  -[:knows]-{1,2} (Pb:Person)
  -[:author]-> (m:Message)
WHERE m.creationDate < $day
RETURN DISTINCT m.id
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SNB workloads
● OLTP: Interactive

● OLAP: Business Intelligence



SNB Interactive v1 (2015)
Q9($name, $day)

creation date < 
$day

name = 
$name

14 complex reads, 7 short reads

Goal: High throughput (ops/s)

Queries start in 1–2 person nodes

8 insert operations run concurrently



SNB Interactive v1 (2015)
Q9($name, $day)

creation date < 
$day

name = 
$name

14 complex reads, 7 short reads

Goal: High throughput (ops/s)

Queries start in 1–2 person nodes

8 insert operations run concurrently

SF100
op/s

32k

8k

4k

2020 2021 2022 2023 year2024

128k

64k

16k

25× speedup in 4 years

71× price-performance 
improvement



SNB Business Intelligence (2022)
Q11($country)

name = $country

Both bulk and concurrent updates allowed

Goal: High throughput & low query runtimes

Queries touch on large portions of the data

Audited results

20 complex read queries, insert & delete ops

SF30,000

SF100 
SF1,000
SF10,000



Using the SNB benchmarks



Making benchmarks easy to use
Specification

Academic paper

Data generator

Pre-generated data sets

Driver

2+ implementations

Guidelines

https://arxiv.org/pdf/2001.02299.pdf
https://arxiv.org/pdf/2001.02299.pdf
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf


Auditing and trademark

Performed by certified auditors (>$20k + infrastructure costs, multiple weeks)

Trademark: only a result produced by an auditor is an “LDBC benchmark result”



The LDBC Graphalytics Benchmark



● Graphalytics = graph + analytics

● An LDBC benchmark for graph algorithm implementations

● A macrobenchmark

● No audits – competitions with leaderboard ranking
(similar to HPC benchmarks such as Top500 and Graph500)

LDBC Graphalytics
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The data sets contain 
untyped, unattributed graphs with 

(optional) edge weights

...

Largest graph:

● 450M vertices
● 34B edges
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Graphalytics algorithms

Breadth-first search(source: “Ben”)
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For each vertex, LCC is #triangles / #wedges.

Similar to triangle count.



Graphalytics algorithms
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In each iteration, the next label of a vertex is 
selected as the minimum mode value among 
the labels of the neighbours.
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Graphalytics algorithms

Breadth-first search(source: “Ben”)
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Most implementations are expected to use the 
delta-stepping SSSP algorithm.



Provisional Graphalytics leaderboard (2024)





LDBC benchmarks – Challenges



Areas to improve in
LDBC benchmarks donʼt sufficiently cover some important recent technologies:

● cloud infrastructure and cloud-native systems
○ serverless systems
○ elasticity 

● binary file formats (e.g. Parquet)
● user-defined functions
● ML workloads

○ graph neural networks
○ knowledge graphs
○ vector databases



Developing a new LDBC benchmark can take 5+ person-years:

● Without a standard language, implementations took a long time
● Hard to obtain a good baseline system (chicken-or-egg problem)

Audits:

● Most Interactive audited results use imperative languages 
● Audits are long and expensive

Data sets:

● Generate data for SF100k and beyond

Benchmark development and audits



DB Engines Ranking for graph: ¼ drop in 3 years



SNB Interactive v1 SNB Business Intelligence

Q9($name, $day)

creation date < 
$day
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name = $country

SNB Interactive v2

Q9($name, $day)
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Semantic Publishing 
Benchmark

Domain: Media/publishing industry

Inferencing & continuous updates

Target: RDF/SPARQL
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Algorithms

BFS
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Data sets

LDBC SNB
Graph500
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Financial Benchmark

≥ amount
< date

≥ amount
< date

Strict latency bound (P99 < 100 ms)

Traversal with truncation




