
TigerGraph: Key Lessons from
Running SNB BI Workload on
Large-Scale Data Set

Aug 2024

Mingxi Wu, SVP of Engineering

1
Disclaimer: The 108TB benchmark is not official LDBC benchmark results, as it has not been audited.

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● This presentation does not represent an official LDBC Benchmark
Results.

● Our work is derived from the LDBC SNB BI Benchmark Workload.
The benchmark results presented herein are not audited, and we
emphasize that these numbers do not constitute an official LDBC
Benchmark test run.

● The purpose of this presentation is to share our experiences and
insights from conducting large-scale stress testing on TigerGraph’s
engine.

2

Safe Harbor Statement

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● Read Query
○ complex read queries
○ touching a significant portion of the data.
○ Choke-point based query design

■ Explosive and redundant multi-joins
■ Expressive path finding

● Microbatches of refresh operations
○ a set of insert and delete operations
○ batched for a given time period (e.g. a day)

3

BI Workload

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● Number of Machines: 72
● Instance Type: AWS r6a.48xlarge
● Each Machine Configuration:

○ Operating System: Amazon Linux 2 AMI (HVM) - Kernel 5.10
○ CPU Type: AMD® EPYC® 7R13 Processor @3.564 GHz
○ Number of vCPUs: 192
○ CPU Cache: L1d 32K, L1i cache 32K, L2 512k, L3: 32768K
○ Memory: 1536 G
○ Disk Type: AWS 6TB General Purpose SSD (gp3), ~4X of data size

○ Disk Detail: 16k Max IOPS; 1GB/s Max throughput

○ Network Bandwidth: 50GB/s

○ EBS Bandwidth: 40GB/s

4

Cluster Setup - Hardware

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● TigerGraph Version: 3.7.0

● LDBC SNB Versions
○ Specification: 2.2.0
○ Data Generator: 0.5.0
○ Driver and implementations: 1.0.2

5

Setup - Software

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION | 6

Schema and Data Inflation from SF-30K
Original Schema — Initial Snapshot(37T)

Dynamic (36T) Static (<1T)

Vertex Edge Vertex Edge

Comment CONTAINER_OF Company HAS_TYPE

Person HAS_CREATOR University IS_LOCATED_IN

Post HAS_INTEREST City IS_PART_OF

Forum HAS_MEMBER Country IS_SUBCLASS_OF

HAS_MODERATOR Continent

HAS_TAG Tag

IS_LOCATED_IN TagClass

MESG_LOCATED_IN

KNOWS

LIKES

REPLY_OF

STUDY_AT

 WORK_AT 6

Triple Schema — Initial Snapshot(<109T)

3 x Dynamic (36T) = 108T Static (<1T)

Vertex Edge Vertex Edge

Comment1 CONTAINER_OF’ Company HAS_TYPE

Comment2 HAS_CREATOR’ University IS_LOCATED_IN

Comment3 HAS_INTEREST’ City IS_PART_OF

Person1 HAS_MEMBER’ Country IS_SUBCLASS_OF

Person2 HAS_MODERATOR’ Continent

Person3 HAS_TAG’ Tag

Post1 IS_LOCATED_IN’ TagClass

Post2 MESG_LOCATED_IN’

Post3 KNOWS’

Forum1 LIKES’

Forum2 REPLY_OF’

Forum3 STUDY_AT’

 WORK_AT’

Dynamic x3

Duplicate the dynamic group in original schema three times

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

In essence, we duplicate dynamic vertex types, modify batch activation, and
keep point activation intact.

● If a query starts with all vertices of a dynamic type, we activate all
○ SELECT p FROM (Post1|Post2|Post3):p WHERE p.language IN languages;

● If a query starts with one dynamic vertex, we select one vertex
○ CREATE QUERY bi10(VERTEX<Person1> personId, STRING country, STRING tagClass)

● If a query starts with static vertex, we activate all dynamic vertices
○ SELECT p

 FROM Country:cn -(<IS_PART_OF.<IS_LOCATED_IN)-
 (Person1|Person2|Person3):p
WHERE cn.name == country AND p.creationDate < endEpoch;

7

Discussion

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● Dynamic Vertex: Vertex type is duplicated three times and indexed
Example:

○ CREATE VERTEX Comment1 (id UINT PRIMARY KEY, creationDate INT,
locationIP STRING, browserUsed STRING, content STRING, length UINT)

○ CREATE VERTEX Comment2 (id UINT PRIMARY KEY, creationDate INT,
locationIP STRING, browserUsed STRING, content STRING, length UINT)

○ CREATE VERTEX Comment3 (id UINT PRIMARY KEY, creationDate INT,
locationIP STRING, browserUsed STRING, content STRING, length UINT)

 Note: Other dynamic vertex types are duplicated and indexed similarly.

8

Schema Setup for Dynamic Groups

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● Dynamic Edge: FROM and TO vertex type are replaced with duplicated vertex types
Example:

○ CREATE DIRECTED EDGE CONTAINER_OF (FROM Forum1|Forum2|Forum3 ,
TO Post1|Post2|Post3) WITH REVERSE_EDGE="CONTAINER_OF_REVERSE"

○ CREATE DIRECTED EDGE REPLY_OF (FROM Comment1|Comment2|Comment3 ,
TO Comment1|Comment2|Comment3|Post1|Post2|Post3) WITH
REVERSE_EDGE="REPLY_OF_REVERSE"

○ CREATE DIRECTED EDGE LIKES (FROM Person1|Person2|Person3 , TO
Comment1|Comment2|Comment3|Post1|Post2|Post3 , creationDate
INT) WITH REVERSE_EDGE="LIKES_REVERSE"

 Note: Dynamic vertex involved in edge definition are duplicated and indexed. Edge type name remains the same in queries.

9

Schema Setup for Dynamic Groups

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION | 10

Data Statistics
 Vertex Cardinality (total: 217.86B) Edge Cardinality (total: 1.62T)

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● Schema
https://github.com/tigergraph/ecosys/blob/ldbc_108T/tigergraph/ddl/sc
hema.gsql

● Query
https://github.com/tigergraph/ecosys/tree/ldbc_108T/tigergraph/queries

● Driver and update
https://github.com/tigergraph/ecosys/tree/ldbc_108T/tigergraph

11

Schema and Query Script

https://github.com/tigergraph/ecosys/blob/ldbc_108T/tigergraph/ddl/schema.gsql
https://github.com/tigergraph/ecosys/blob/ldbc_108T/tigergraph/ddl/schema.gsql
https://github.com/tigergraph/ecosys/tree/ldbc_108T/tigergraph/queries
https://github.com/tigergraph/ecosys/tree/ldbc_108T/tigergraph

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● The official benchmark consists of

○ load data,

○ power test

○ and throughput test

● This benchmark runs power and throughput test of 28 query variants with 5
substitution parameters, in total of 28 x 5 = 140 queries

12

Benchmark Workflow and Implementation

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● Loading time: 12hr45min over 72 machines

● Loaded topology data size on each machine:

○ ~617 GB (about 44.4TB aggregate 72 machines)

● Compress ratio: 44.4/108*100%=41%

● Loading Speed: 117.6G/Hour/Machine

13

Results -Loading

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION | 14

Performance Results

Calculations based on LDBC Specifications

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION | 15

Performance Results

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION | 16

Detailed Results -Performance

© 2024. ALL RIGHTS RESERVED. | TIGERGRAPH.COM | CONFIDENTIAL INFORMATION |

● TigerGraph efficiently handled deep-link OLAP queries on a graph with
217.9 billion vertices and 1.6 trillion edges. Eleven data-intensive queries
returned results within one minute; the rest took 1 to 10 minutes.

● This benchmark showcases TigerGraph's capability to manage large-scale
graph workloads with frequent incremental updates. To our knowledge, no
other graph or relational database has demonstrated similar performance on
such a scale.

17

Conclusion

