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ByteGraph 2.0 (BG 2.0) is a distributed graph database independently developed by

ByteDance, used for managing and processing massive amounts of graph data

generated by products such as Douyin, and Toutiao every day.

Its deployment scale is huge, including 1000 clusters, with 1 million CPU cores and

100PB of persistent storage.

The businesses involved include social network relationship data, friend
recommendations, video recommendations, search, encyclopedia, e-commerce,

knowledge graphs, internal microservices network relationships, and more.
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* Limitation of Previous System



Architecture of ByteGraph 2.0
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Figure 1: The Architecture of ByteGraph

(VLDB2022) ByteGraph: A High-Performance Distributed Graph Database in ByteDance
https://www.vldb.org/pvidb/vol15/p3306-Ii.pdf



. ByteGraph 2.0 Problems -- Issue 1

Inefficient graph access and high operational cost caused by LSM KV.
* Weak read performance of LSM KV.
 Dataredundancy due to multiple copies for data safety.
 Write amplification caused by B-tree on LSM architecture.

* Memory redundancy in LSM KV block cache/row cache.



ByteGraph 2.0 Problems -- Issue 2

Workload-unaware space management.

* Write amplification caused by B-tree on LSM architecture.

 Unable to separate hot and cold data or perform space reclamation based on the
degree of hotness or coldness.



. ByteGraph 2.0 Problems -- Issue 3

Lack of support for scaling real-time graph analytics

* Limitations of the read-write node synchronization mechanism: The legacy
system’s read-write node synchronization mechanism uses asynchronous
forwarding of write requests, achieving only eventual consistency. This limits the
system’s scalability for real-time graph analysis. Because it cannot synchronize
read and write nodes within a limited time, the system struggles to meet the

demands of graph analysis tasks that require high levels of real-time
responsiveness.
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* ByteGraph 3.0 Achitechture (Solutions)



ByteGraph 3.0 Achitechture
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Figure 2: The architecture of BG3

(SIGMOD 2024) BG3: A Cost Effective and I/0 Efficient Graph Database in Bytedance



. Design 1: Space Optimized Bwtree Forest

All Data in One Bw-tree : Space Optimized Bw-tree Forest

If All Edges in One Bw-Tree

* |[nsert into a common tree when a vertex’s out-degree is small.
* Splitinto a separate tree when the vertex’s out-degree is large.
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Figure 3: Space Optimized Bw-tree Forest



Design 2: Read Optimized BwTree
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Figure 4: Read & Write Process Comparison

e Compared to the native Bw-tree’s delta-chain implementation, the read-optimized B-tree retains only a single delta for each page. This
approach sacrifices some write amplification to reduce read I0OPS, making it more suitable for read-heavy and write-light workloads.



Design 3: Workload-Aware Space Reclamation
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* Time-to-Live: Indicates the expiration time of the data. Figure 5: Spatial Changes of Different Extents

(UG stands for Update Gradient; FR stands for Fragmentation Rate;
TTL stands for Time to Live)



Design 4: 1/0 Efficient Synchronization Mechanism -- Issue

Mechanism: Write-Ahead Log Synchronization

 Read-write nodes write data update operations to the
write-ahead log and store it in shared storage.

e Read-only nodes read these logs from the shared storage
and replay them in memory to achieve data
synchronization with the read-write nodes.

Issue:
* B-tree split will cause some read inconsistency, as shown
in the figure.
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Figure 6: Data Inconsistency Issue



Design 4: 1/0 Efficient Synchronization Mechanism -- Solution
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Figure 7: Workflow of I/0 Efficient Synchronization

Unify WAL Stream:
* BG3 ensures consistency by maintaining multiple versions of the data and synchronizing
the read-write node’s flush/update mapping operations in the log stream.
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Table 1: Workload description.
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Figure 8: Overall Performance (Vertical: a single machine; Horizontal: 2 to 10 machines, each with 16 cores)



Evaluation
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Conclusion

We present BG3, a high-performance distributed graph database for the efficient management and
processing of large-scale graphs at ByteDance.

* BG3 provides a new storage engine based on cost-effective shared storage and BW-tree indexes, a
workload-aware space reclamation mechanism, and a lightweight yet efficient leader-follower
synchronization mechanism.

* We experimentally show that BG3 achieves competitive performance compared to Amazon Neptune
and ByteGraph 2.0.



I Join US

We are hiring, looking for talents with expertise in

* Graph Database,
 Graph Computing or Graph Neural Network.

Please feel free to drop me an email at
chencheng.sg@bytedance.com.

Thanks
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