BG3: A Cost Effective and I/0O Efficient
Graph Database in ByteDance

Chen Cheng

Jii! ByteDance Tz

. About Me

RD from ByteGraph team in ByteDance
Ph.D. from the National University of Singapore

Research:
 Published ~40 papers in top-tier conferences and journals, with over 1200 citations
* Interests include GNN, Al infrastructure, Graph Computing, Graph Databases, and Storage

Awards:
 Best Paper (Runner up) - EuroSys 2024
 Best Industry Paper (Runner up) - VLDB 2023

Services:

* PC member of ICDE 2025 (research track)

e PC member of ICDE 2024 (industrial track)

e PC member of SIGMOD 2024 (industrial track)

Overview

* Background

Background

[UseeB |\ Like{date}

Like{date} /

Like {date! Follow {date}

N

Follow Like{date} /

Video A
\ iname,age} | {tag} \ {name, age}

Post{date} Follow{date} Like{date}

L

User A Post{date}

!

Video B

TR Video D « |
Wi {tag} € \ {name,age} |
4 Comment |\ ?

Post{date! Follow {date}

l / Post{date}

User C Like{date} _/ Video C

{tag|

|

Follow {date} Like{date}

5 ol

Like {date} /

User E

\ {name, age} | {tag}

\ {name, age} |

User D \

Follow

{date}

ByteGraph 2.0 (BG 2.0) is a distributed graph database independently developed by

ByteDance, used for managing and processing massive amounts of graph data

generated by products such as Douyin, and Toutiao every day.

Its deployment scale is huge, including 1000 clusters, with 1 million CPU cores and

100PB of persistent storage.

The businesses involved include social network relationship data, friend
recommendations, video recommendations, search, encyclopedia, e-commerce,

knowledge graphs, internal microservices network relationships, and more.

Overview

* Limitation of Previous System

Architecture of ByteGraph 2.0

| Client |
e I
________________________ N mmmmmm e
Available Zone 1 | Available Zone 2
Execution | | Execution
. .cee l eee .
BGE Engine 1 1 Enginen

Asynchrondus Write
Request Folrwarding
|

Read/Write Node Read Only Node
BGS @l . @I .
Btree-Like Edge Btree-Like Edge
Tree Index Tree Index

Distributed LSM-based KV Storage Engine

Figure 1: The Architecture of ByteGraph

(VLDB2022) ByteGraph: A High-Performance Distributed Graph Database in ByteDance
https://www.vldb.org/pvidb/vol15/p3306-Ii.pdf

. ByteGraph 2.0 Problems -- Issue 1

Inefficient graph access and high operational cost caused by LSM KV.
* Weak read performance of LSM KV.
 Dataredundancy due to multiple copies for data safety.
 Write amplification caused by B-tree on LSM architecture.

* Memory redundancy in LSM KV block cache/row cache.

ByteGraph 2.0 Problems -- Issue 2

Workload-unaware space management.

* Write amplification caused by B-tree on LSM architecture.

 Unable to separate hot and cold data or perform space reclamation based on the
degree of hotness or coldness.

. ByteGraph 2.0 Problems -- Issue 3

Lack of support for scaling real-time graph analytics

* Limitations of the read-write node synchronization mechanism: The legacy
system’s read-write node synchronization mechanism uses asynchronous
forwarding of write requests, achieving only eventual consistency. This limits the
system’s scalability for real-time graph analysis. Because it cannot synchronize
read and write nodes within a limited time, the system struggles to meet the

demands of graph analysis tasks that require high levels of real-time
responsiveness.

Overview

* ByteGraph 3.0 Achitechture (Solutions)

ByteGraph 3.0 Achitechture

r—"""""~""~"~>">"~>"7 T
| Client |
We propose ByteGraph 3.0 (BG3), which includes: Execution Execution
Engine 1 Engine n
. o Read/Write Node Read Only Node
Design 1: Space Optimized BwTree Forest. / e
| Bw-tree 0 R
5 00007 & N I = R o N = e o N = i
Design 2: Read Optimized BwTree ;5_?,%, iéié,j o é.(EE. '
Space Optimized Bw-—tre_e F_or:st_ Space Optimized Bw-tree Forest
Design 3: Workload-Aware Space Reclamation peristent || Workioad-aware ﬂ” Persisten
Forest Reclamation Forest
Design 4: 1/0 Efficient Synchronization Mechanism Append-only Shared Cloud Storage

Figure 2: The architecture of BG3

(SIGMOD 2024) BG3: A Cost Effective and I/0 Efficient Graph Database in Bytedance

. Design 1: Space Optimized Bwtree Forest

All Data in One Bw-tree : Space Optimized Bw-tree Forest

If All Edges in One Bw-Tree

* |[nsert into a common tree when a vertex’s out-degree is small.
* Splitinto a separate tree when the vertex’s out-degree is large.

I
|
in One Bw-tree | Bw-tree (A)
* Pros: Memory efficiency Alinone Bu? | y 3
* Cons: High conflict rate, low scalability) \ N s — AR ,
s -) | o ;
NS B Key [v > [va e
- ° ° y . 7 B \' \Y V. \'Y e
If Each Vertex Adjacency List in a Separate Bw-Tree Conflict, sy | -
(forming a forest of Bw-Trees): - SR =
ed : | w-tree
* Pros: Low conflict rate, high scalability : 7
’ K <:)NV ’.’" l(:)"\! eeell ,’ \\
* Cons: Not memory efficient v:' @1 @n@) @ | *\,:AE Ac
I 4 '
. . . . K .«
Solution: Space-Optimized Bw-Tree Forest : '\(,e‘l' ®f- -], ve‘l' Ol
d d
|

Figure 3: Space Optimized Bw-tree Forest

Design 2: Read Optimized BwTree

Original Bw-tree Read Optimized Bw-tree

|
I
A3+"\. ; A 1gogaf= -+ o
~. | N ~.
-8 Lo AV i > | ID [Pt A1&2—\«\ ™,
b I —v ' ~ N . I Voo ~ N
— ® A . flash '\ | ® A \ ‘, . flash '\
; 1~ . “ \ . ! 1™ - Ny \ .
g . 1 ! /. .
Y ‘\ \ \ | e \ \
Base Page . | \ Base Page ‘ . \
Y . ' \ :
Storage flash l 7 , 2R flash o v 7
Base Page v (A1 AZL A3 ! Base Page I;Al A1&2| A1&2&a|
7 '\’l N7 | B ——— >
A3$ M- I
¥ ~ . :
ID [Pty A2|4.,\ N l ID [Ptr
© .1 N read\o |
(© A 1| N \ : |\ 12023% + ~ . _ read
Q T A . | . T~
oc " \ \ : ~.
Base Page \ . | Base Page N
read f \ ‘ ‘ | read f \
Base Page ~ (A1 Azk AB‘ |‘ Base Page L A1 A1&2| A 18283

Figure 4: Read & Write Process Comparison

e Compared to the native Bw-tree’s delta-chain implementation, the read-optimized B-tree retains only a single delta for each page. This
approach sacrifices some write amplification to reduce read I0OPS, making it more suitable for read-heavy and write-light workloads.

Design 3: Workload-Aware Space Reclamation

invalid page cold page hot page
o Extent A i .I;(tentA UG_2/7t1:0)_—Ex;nt_A__\\
Three strategies: | R 3/5 !
| TTL:NA |
| i
@ | Selected by Traditional Space Reclamation :
o . . I |
 Update Gradient: Represents the rate of invalid page Extent B B ED Extent B :
, | FR :3/5 |
growth for each extent. ‘_ o SRS
M .. _invaliddue to TTL ./
] _ _ Extent C (Extentc ey | ExtentC \
* Fragmentation Rate: Represents the rate of invalid pages i FR :2/5 |
TTL:NA .
for each extent. . Seected by Workoad Aware Space Recamation
) 1 1 >
to f1 2 (Time)

* Time-to-Live: Indicates the expiration time of the data. Figure 5: Spatial Changes of Different Extents

(UG stands for Update Gradient; FR stands for Fragmentation Rate;
TTL stands for Time to Live)

Design 4: 1/0 Efficient Synchronization Mechanism -- Issue

Mechanism: Write-Ahead Log Synchronization

 Read-write nodes write data update operations to the
write-ahead log and store it in shared storage.

e Read-only nodes read these logs from the shared storage
and replay them in memory to achieve data
synchronization with the read-write nodes.

Issue:
* B-tree split will cause some read inconsistency, as shown
in the figure.

15 Cl1u

Read Only
DRAM Internal Page O o - Internal Page O e ezl
'8 2 Bl —
Initial :) Get(3)
nitia
Stotus Leaf Page P Leaf Page P
k[112]3]4 Kl|1]12]|3|4 Result:V3
RW [vivivalvslva @O [Vv[vi|valv3|va Y
= o o [K[1]2]3]4 Shared
Vv |V1|V2|Vv3|Va Storage
- 4
Read Onl
Zf,“e‘,’ﬁ';‘,f,',',f ~ Internal Page O’ / - Internal Page O \ O:)aerati':): <
B =
\\ . Error | Gets)
Put(5,V5) Leaf Page P’ Léag Page Q a 3 “\,Leaf Page P’ Expect: V3
Kl1][2 K|3]4]|5 pageerj_lj_Zzg__ K{1]2 Result: Null
RW [vfva]v2 v|va|valvs RO 'V V1V2V3Vay |V Vilv2 =
flush® === =T5ad
— =
2 o = [k[1]2 I NEIOE Shared
Q V|[V1{V2 V|V3|Va|Vs Storage

Figure 6: Data Inconsistency Issue

Design 4: 1/0 Efficient Synchronization Mechanism -- Solution

@O Put(5,Vs) G Get(3), Get(2)
—t Internal Page O ->0O’
RW e (1213 5 () RO
T = nternal Page [e) L | LSN 30
Ple | | C Miss X '
(e} 4 7 o —-—C-w f,_r _lsrs_‘ i Y /Lazy Replay
\"\, s Page\p kAo oosZada o qlKi3141S L
Leaf Pag¢ P’ Leaf Page Q SN2 V3N v [Vv3|valvs o8
K|1]2 K|3]|4a|s K 2 Reply Page
Page P’ Index
Vv|Vvi|v2 Vv |Vv3|Vvalvs Lv]valva2 “—LSN 31&32
— e nvalidate—
LSN | LSN

|
Al S + S
= 7/
Update \) .
Mapping Table W Log ; (3) Read Log
- i

g_Wr'te s Whte-Ahead LSN:30 __E§L\I__,3J/ LSN:32 LSN:33 LSN:34 \ S e a i i
_(B L — e }in O: InSGy’ Q: MV (3,Vv3),|P: RM 3,4 Mapping Disable LSN 1Sync I/O
L1 Ls geing (4,v4), (5.V5) Updated _ |Before 32 : — >,
" — y 4 : :
74 -~ . IAsync I/O
kK[1]2]3]a K[3Ta[s k[1]2] 1 o :
Append VI|V1i|V2|Vv3|Va V |V3|VVa|Vs VIVi|V2 I
Mapping Table | Only Data Page P Page O Page Q Page P’ Page O’
Area Area L1(Offset O) L2(Offset 60) L3 (Offset 76) L4(Offset 136) L5(Offset 196

Figure 7: Workflow of I/0 Efficient Synchronization

Unify WAL Stream:
* BG3 ensures consistency by maintaining multiple versions of the data and synchronizing
the read-write node’s flush/update mapping operations in the log stream.

Overview

e Evaluation

Throughput (Kq/s)

Evaluation

o e
i ps B @B

Table 1: Workload description.

Workload Read/Write

Description V| 13 Hops

99%/1%
50%/50%

read-only

Douyin Follow
Financial Risk Control

Douyin Recommendation

3M 0.5B 1
Pattern matching[32], single edge insertion, full graph reading, 10 hops and 100 edges 5B 100B 5to 10
3M 0.5B 1to3

Managing Douyin Follow records, single edge insertion, one-hop neighbor query

multi-hop neighbor query, 70% 1-hop, 20% 2-hop, and 10% 3-hop

Neptune]
ByteGr aph sy

Vertical|Horizontal

-

S s
r\ .
SF 2 el

('t"“' ,:rln

-l (‘i

21.10

00
e 39 ().00
87.00

"
i
ot

o 2

NN NN N SN N N
TOTOTOTOOIOTOS,
R

AT 0

AT AT A ‘A‘ l - 7
TR TN TR TN,
R

o e

e ! .
o &0 *
» » D -
o] o

NS 1 CEL b
6 32 64 96 128 160
number of vcpus

(a) Douyin follow

ByteGraph3.0 53 Neptune =5

ByteGraph E===E3
Vertical[Horizontal

Neptune CZZZX]
ByteGraph2.() B

Vertical [Horizontal

=

S
o

wn
-

o
I
-

24200

g
S5
o en

.00
64.30

=

i

(e
S
80
212630

4 D)

™ 1
- A
(ag Lag]
o

)
(o
4

] 2.08
3
3.19
] 98 .20

Throughput (Kq/s)
1
A
Throughput (Kq/s)
00
7.3
I8

RRRRXX] 3.19
s

?e%%% % LR)

—
-
I
99
22
3
0
31
05
3.5
4.5
08
2

0.25
3

)
X
[.O

16 32 64 96
number of vcpus
(b) Financial risk control

[>
= .:.:.
& o
.®. L

16 32 64 96 128 160
number of vcpus
(¢c) Douyin recommendation

-

o

§ o
-

128 160

]

L D
b 1 &
o o
o -
[» .. » D

Figure 8: Overall Performance (Vertical: a single machine; Horizontal: 2 to 10 machines, each with 16 cores)

Evaluation

ActRead ZZXZT PageRead EEEEss

~
-
c.
=]
oo
-

1 OO i i 5 7~ »’0'0"0'0'
o~ 0 £ Ao PRI
= 80} 148 60 | R e tatator ey
o 0 RIXXIRIXHRS RRAXHHNN

tetetetete etetes leleleteleleteted

N 0NN HS55RRRRRKS

~— : - SRRHAHRKK Sgalatatelateteiet

60 3 5 < SRR R

- - R 193 .5 O 40+ »’Qoso’o’\\so’o’oj -’0’0"0‘0’0’ X

3 = = ERRERS R
R Qs O XK A elele .

S 40 . 12 E S RS

- 5 : R

= : = S 20} s

: . |, s S S

£ 20f 2 SRR

- B 2 < X PRRRRRIAXX
0 ' 0 SLED BG3

SLE(IE)onﬁgurationIzG3 Contigurations

Figure 9: Read Amplification Comparision Between the Traditional Figure 10: Write Bandwidth Comparision Between the Traditional
Bw-tree and the Read Optimized Bw-tree. Bw-tree and the Read Optimized Bw-tree.

Overview

e Conclusion

Conclusion

We present BG3, a high-performance distributed graph database for the efficient management and
processing of large-scale graphs at ByteDance.

* BG3 provides a new storage engine based on cost-effective shared storage and BW-tree indexes, a
workload-aware space reclamation mechanism, and a lightweight yet efficient leader-follower
synchronization mechanism.

* We experimentally show that BG3 achieves competitive performance compared to Amazon Neptune
and ByteGraph 2.0.

I Join US

We are hiring, looking for talents with expertise in

* Graph Database,
 Graph Computing or Graph Neural Network.

Please feel free to drop me an email at
chencheng.sg@bytedance.com.

Thanks

mailto:chencheng.sg@bytedance.com

Jii! ByteDance Tz

