
BG3: A Cost Effective and I/O Efficient
Graph Database in ByteDance

Chen Cheng

About Me

RD from ByteGraph team in ByteDance
Ph.D. from the National University of Singapore

Research：
• Published ~40 papers in top-tier conferences and journals, with over 1200 citations
• Interests include GNN, AI infrastructure, Graph Computing, Graph Databases, and Storage

Awards:
• Best Paper (Runner up) - EuroSys 2024
• Best Industry Paper (Runner up) - VLDB 2023

Services:
• PC member of ICDE 2025 (research track)
• PC member of ICDE 2024 (industrial track)
• PC member of SIGMOD 2024 (industrial track)

Overview

• Background

• Limitation of Previous System

• ByteGraph 3.0 Achitechture (Solutions)

• Evaluation

• Conclusion

Background

ByteGraph 2.0 (BG 2.0) is a distributed graph database independently developed by

ByteDance, used for managing and processing massive amounts of graph data

generated by products such as Douyin, and Toutiao every day.

Its deployment scale is huge, including 1000 clusters, with 1 million CPU cores and

100PB of persistent storage.

The businesses involved include social network relationship data, friend

recommendations, video recommendations, search, encyclopedia, e-commerce,

knowledge graphs, internal microservices network relationships, and more.

Overview

• Background

• Limitation of Previous System

• ByteGraph 3.0 Achitechture (Solutions)

• Evaluation

• Conclusion

Architecture of ByteGraph 2.0

（封面）

(VLDB2022) ByteGraph: A High-Performance Distributed Graph Database in ByteDance
https://www.vldb.org/pvldb/vol15/p3306-li.pdf

ByteGraph 2.0 Problems -- Issue 1

Inefficient graph access and high operational cost caused by LSM KV.

• Weak read performance of LSM KV.

• Data redundancy due to multiple copies for data safety.

• Write amplification caused by B-tree on LSM architecture.

• Memory redundancy in LSM KV block cache/row cache.

ByteGraph 2.0 Problems -- Issue 2

Workload-unaware space management.

• Write amplification caused by B-tree on LSM architecture.

• Unable to separate hot and cold data or perform space reclamation based on the
degree of hotness or coldness.

ByteGraph 2.0 Problems -- Issue 3

Lack of support for scaling real-time graph analytics

• Limitations of the read-write node synchronization mechanism: The legacy
system’s read-write node synchronization mechanism uses asynchronous
forwarding of write requests, achieving only eventual consistency. This limits the
system’s scalability for real-time graph analysis. Because it cannot synchronize
read and write nodes within a limited time, the system struggles to meet the
demands of graph analysis tasks that require high levels of real-time
responsiveness.

Overview

• Background

• Limitation of Previous System

• ByteGraph 3.0 Achitechture (Solutions)

• Evaluation

• Conclusion

ByteGraph 3.0 Achitechture

We propose ByteGraph 3.0 (BG3), which includes:

Design 1: Space Optimized BwTree Forest.

Design 2: Read Optimized BwTree

Design 3: Workload-Aware Space Reclamation

Design 4: I/O Efficient Synchronization Mechanism

(SIGMOD 2024) BG3: A Cost Effective and I/O Efficient Graph Database in Bytedance

Design 1: Space Optimized Bwtree Forest

If All Edges in One Bw-Tree
• Pros: Memory efficiency
• Cons: High conflict rate, low scalability

If Each Vertex Adjacency List in a Separate Bw-Tree
(forming a forest of Bw-Trees):
• Pros: Low conflict rate, high scalability
• Cons: Not memory efficient

Solution: Space-Optimized Bw-Tree Forest
• Insert into a common tree when a vertex’s out-degree is small.
• Split into a separate tree when the vertex’s out-degree is large.

Design 2: Read Optimized BwTree

• Compared to the native Bw-tree’s delta-chain implementation, the read-optimized B-tree retains only a single delta for each page. This
approach sacrifices some write amplification to reduce read IOPS, making it more suitable for read-heavy and write-light workloads.

Design 3: Workload-Aware Space Reclamation

Three strategies:

• Update Gradient: Represents the rate of invalid page
growth for each extent.

• Fragmentation Rate: Represents the rate of invalid pages
for each extent.

• Time-to-Live: Indicates the expiration time of the data.

Design 4: I/O Efficient Synchronization Mechanism -- Issue

Mechanism: Write-Ahead Log Synchronization
• Read-write nodes write data update operations to the

write-ahead log and store it in shared storage.
• Read-only nodes read these logs from the shared storage

and replay them in memory to achieve data
synchronization with the read-write nodes.

Issue:
• B-tree split will cause some read inconsistency, as shown

in the figure.

Design 4: I/O Efficient Synchronization Mechanism -- Solution

Unify WAL Stream:
• BG3 ensures consistency by maintaining multiple versions of the data and synchronizing

the read-write node’s flush/update mapping operations in the log stream.

Overview

• Background

• Limitation of Previous System

• ByteGraph 3.0 Achitechture (Solutions)

• Evaluation

• Conclusion

Evaluation

Evaluation

Overview

• Background

• Limitation of Previous System

• ByteGraph 3.0 Achitechture (Solutions)

• Evaluation

• Conclusion

Conclusion

We present BG3, a high-performance distributed graph database for the efficient management and
processing of large-scale graphs at ByteDance.

• BG3 provides a new storage engine based on cost-effective shared storage and BW-tree indexes, a
workload-aware space reclamation mechanism, and a lightweight yet efficient leader-follower
synchronization mechanism.

• We experimentally show that BG3 achieves competitive performance compared to Amazon Neptune
and ByteGraph 2.0.

Join US

We are hiring, looking for talents with expertise in

• Graph Database,
• Graph Computing or Graph Neural Network.

Please feel free to drop me an email at
chencheng.sg@bytedance.com.

Thanks

mailto:chencheng.sg@bytedance.com

Q&A

