
FaaSGraph: Enabling Scalable, Efficient, and Cost-
Effective Graph Processing with Serverless Computing

Yushi Liu1,  Shixuan Sun1, Zijun Li1,  Quan Chen1,  Sen Gao2,  
Bingsheng He2,  Chao Li1,  Minyi Guo1

Shanghai Jiao Tong University1;   National University of Singapore2

1



Graph Processing Stack

Apps

Framework

Resource

Social Network Mining Recommendation System Road Analysis

Ligra (PPoPP’13), 
Galois (SOSP’13), 

GraphIt (OOPSLA’18)

Shared 
Memory

Distributed
Gemini (OSDI’16),

Graphite (SIGMOD’20),
GraphScope (VLDB’21)

Cloud VMs (Infrastructure-as-a-Service)Physical Servers
2



Iterative Execution Flow

1. Dispatch Task

2. Compute 2. Compute

2. Compute

3. All-to-all 
Communication

4. Collect Results

5. Iterative Execution

The Original GraphMultiple Subgraphs

3



Tail latency surge during query spikes.

* Real-world graph processing workload on a city road network from our industry partner

IaaS-based Graph Systems are not Elastic

Resource waste under low load.
Constant 

Processing 
Capability

Query 
Workload

4



Introducing Serverless Computing

Auto-scaling
Ø The “Unbounded Scaling” policy[1].

Pay-per-use billing
Ø Fine-grained billing (<1ms).
Ø Charge based on resource usage, not resource allocation.

Ease of management
Ø Cloud manage underlying infrastructures.
Ø Users upload only the source code and data.

[1] https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html 5



End-to-end Performance Degradation

Overall = Resource Initialize + IO&Preprocessing + Compute 
Gemini 148.5s 20.7s (25.9x) 113.2s 14.6s

S - R 661.3s 
(⬇4.5x)

0.8s 401.3s (⬇3.5x) 259.1s (⬇17.7x)

S - D 261.0s (⬇1.8x) 0.8s 142.7s (⬇1.3x) 117.5s (⬇8.0x)
* S-R: Gemini[2] in Serverless; S-D: Gemini in Serverless with Direct Communication

Ø Direct migration can degrade performance.
Ø Graph IO & preprocessing dominates performance.

Lessons Learned

[2] Zhu, Xiaowei, et al. "Gemini: A Computation-Centric distributed graph processing system." In OSDI, 2016. 6



Memory Waste

Query Spike Arrives Recycle

Memory Waste 
23.6%

Excessive scaling due to lengthy cold start

Ø Unbounded scaling allocates excessive resources, which 
are commonly wasted.

Lessons Learned

7



FaaSGraph: Serverless-native Graph Processing

Ø Co-designed scheme that combines graph processing and 
serverless architecture.

Resource Fusion Bounded Scaling Graph Optimizations

8



ContainerSet as Resource Abstraction

Benefits Improve cluster resource utilization.

Insights   Use unified, fine-grained containers to execute 
graph processing tasks while maintaining scheduling flexibility.

Original Graph

Server A Server BContainerSet 9



Locality-aware Resource Fusion

Local:
Ø CPU sharing: better 

load balancing 
Ø Memory sharing: fast 

data sync channel

Remote:
Ø Message consolidation
Ø Async transmission

Benefits Improve comp. & comm. performance.

Insights   Reintroduce the “illusion of locality” through 
resource fusion.

10



Bounded Scaling

Benefits Reduce memory footprint, reduce latency.

Insights Rather than immediately allocating new resources, 
wait for the current occupied resources to become available.

Cold Start Queueing
11



Graph Optimizations

Single Mode, Main Initiated 
Message Passing

Benefits  Reduce memory usage.

Fast Graph Loading

Benefits  Reduce preprocessing 
overhead.

12



Experiment Settings

Workloads
Graphs[3]: 4 SNAP datasets + road graph
Apps: breadth-first-search (bfs), 

connected-components (cc), pagerank (pr), 
single-source-shortest-path(sssp)

Environments
Single Query Evaluation:  4-server cluster
Large Scale Case Study:  34-server cluster

[3] https://snap.stanford.edu/data

Baselines
Gemini (OSDI’16), Graphite (SIGMOD’20), 
Graphit (OOPSLA’18), GraphScope(VLDB’21)

13



Experiment Results

Reduced memory 
consumption

Max

52.4%

End-to-end performance 
improvement

Max

8.3× 0

5

10

amazon livejournal twitter friendster

End-to-end Latency Speedup (FaaSGraph vs. Baselines)

bfs cc pagerank sssp

1.0x

Cost-Performance OptimalLow memory scaling overhead
14



Real-world one-day 
monetary cost savings

Max 

85.7%

Tail latency improvement 
during query spike

Max

6.6×

Steady 99%-ile Latency Auto-scaling with 
Bounded Scaling Policy

Gemini Gemini-Naïve-Scaling FaaSGraph
$283.96 $179.24 $40.74

Real-World Case Study

Constant Resource Config Scale Every 10 Minutes

15



Conclusion

Ø IaaS-based systems perform poorly under fluctuating workloads.

Ø We introduce FaaSGraph, a scalable, efficient and cost-effective 
billion-edge graph processing engine.

Ø FaaSGraph achieves significant improvements in latency, memory, 
and cost compared to state-of-the-art systems.

Resource Fusion Bounded Scaling Graph Optimizations

16



Source Code:  https://github.com/ziliuziliu/FaaSGraph

Thanks!

17

https://github.com/ziliuziliu/FaaSGraph

