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Tail latency surge during query spikes.

* Real-world graph processing workload on a city road network from our industry partner

IaaS-based Graph Systems are not Elastic

Resource waste under low load.
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Query 
Workload

4



Introducing Serverless Computing

Auto-scaling
Ø The “Unbounded Scaling” policy[1].

Pay-per-use billing
Ø Fine-grained billing (<1ms).
Ø Charge based on resource usage, not resource allocation.

Ease of management
Ø Cloud manage underlying infrastructures.
Ø Users upload only the source code and data.

[1] https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html 5



End-to-end Performance Degradation

Overall = Resource Initialize + IO&Preprocessing + Compute 
Gemini 148.5s 20.7s (25.9x) 113.2s 14.6s

S - R 661.3s 
(⬇4.5x)

0.8s 401.3s (⬇3.5x) 259.1s (⬇17.7x)

S - D 261.0s (⬇1.8x) 0.8s 142.7s (⬇1.3x) 117.5s (⬇8.0x)
* S-R: Gemini[2] in Serverless; S-D: Gemini in Serverless with Direct Communication

Ø Direct migration can degrade performance.
Ø Graph IO & preprocessing dominates performance.

Lessons Learned

[2] Zhu, Xiaowei, et al. "Gemini: A Computation-Centric distributed graph processing system." In OSDI, 2016. 6



Memory Waste

Query Spike Arrives Recycle

Memory Waste 
23.6%

Excessive scaling due to lengthy cold start

Ø Unbounded scaling allocates excessive resources, which 
are commonly wasted.

Lessons Learned
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FaaSGraph: Serverless-native Graph Processing

Ø Co-designed scheme that combines graph processing and 
serverless architecture.

Resource Fusion Bounded Scaling Graph Optimizations
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ContainerSet as Resource Abstraction

Benefits Improve cluster resource utilization.

Insights   Use unified, fine-grained containers to execute 
graph processing tasks while maintaining scheduling flexibility.

Original Graph

Server A Server BContainerSet 9



Locality-aware Resource Fusion

Local:
Ø CPU sharing: better 

load balancing 
Ø Memory sharing: fast 

data sync channel

Remote:
Ø Message consolidation
Ø Async transmission

Benefits Improve comp. & comm. performance.

Insights   Reintroduce the “illusion of locality” through 
resource fusion.
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Bounded Scaling

Benefits Reduce memory footprint, reduce latency.

Insights Rather than immediately allocating new resources, 
wait for the current occupied resources to become available.

Cold Start Queueing
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Graph Optimizations

Single Mode, Main Initiated 
Message Passing

Benefits  Reduce memory usage.

Fast Graph Loading

Benefits  Reduce preprocessing 
overhead.
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Experiment Settings

Workloads
Graphs[3]: 4 SNAP datasets + road graph
Apps: breadth-first-search (bfs), 

connected-components (cc), pagerank (pr), 
single-source-shortest-path(sssp)

Environments
Single Query Evaluation:  4-server cluster
Large Scale Case Study:  34-server cluster

[3] https://snap.stanford.edu/data

Baselines
Gemini (OSDI’16), Graphite (SIGMOD’20), 
Graphit (OOPSLA’18), GraphScope(VLDB’21)
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Experiment Results

Reduced memory 
consumption

Max

52.4%

End-to-end performance 
improvement

Max

8.3× 0
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End-to-end Latency Speedup (FaaSGraph vs. Baselines)

bfs cc pagerank sssp

1.0x

Cost-Performance OptimalLow memory scaling overhead
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Real-world one-day 
monetary cost savings

Max 

85.7%

Tail latency improvement 
during query spike

Max

6.6×

Steady 99%-ile Latency Auto-scaling with 
Bounded Scaling Policy

Gemini Gemini-Naïve-Scaling FaaSGraph
$283.96 $179.24 $40.74

Real-World Case Study

Constant Resource Config Scale Every 10 Minutes
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Conclusion

Ø IaaS-based systems perform poorly under fluctuating workloads.

Ø We introduce FaaSGraph, a scalable, efficient and cost-effective 
billion-edge graph processing engine.

Ø FaaSGraph achieves significant improvements in latency, memory, 
and cost compared to state-of-the-art systems.

Resource Fusion Bounded Scaling Graph Optimizations
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Source Code:  https://github.com/ziliuziliu/FaaSGraph

Thanks!

17

https://github.com/ziliuziliu/FaaSGraph

